Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

THIS WEBPAGE IS DEPRECATED - please visit our new website

Predicting Alzheimer's Disease

Supervision by: Christian Wachinger (

Project Description

Neurodegenerative disorders like Alzheimer’s disease (AD) are devastating brain diseases that severely affect a patient’s quality of life for many years and also comes with great economic costs associated with patient care. A variety of data is collected for studying AD including clinical, genetic, and imaging data, with a special focus on early detection and tracking of AD.

Alzheimer's disease causes severe atrophy (cortical thinning) in the brain, as shown in the image below. Such changes can be measured with magnetic resonance imaging (MRI). In addition, genetic markers can increase the risk for developing AD. In this project, we will use multi-modal data for studying Alzheimer's disease. The goal of this thesis is to develop machine/deep learning techniques for AD prediction that fully integrate multi-modal data of the patient.

Credit: National Institute on Aging, National Institutes of Health, License


  • We are looking for an enthusiastic student with programming skills (Python)
  • Experience in Machine Learning and Image Analysis is a plus.
  • Experience with deep learning frameworks (e.g., TensorFlow, PyTorch) is desirable.


If you are interested, please contact Christian Wachinger.

Title: Predicting Alzheimer's Disease
Director: Nassir Navab
Supervisor: Christian Wachinger
Type: Master Thesis
Area: Machine Learning, Medical Imaging
Status: open
Thesis (optional):  

Edit | Attach | Refresh | Diffs | More | Revision r1.5 - 21 Jun 2021 - 11:59 - ChristianWachinger