Needle tracking for ultrasound-guided biopsies with inside-out vision
Motivation and problem statement

- **Problem:**
 - Needle tip location uncertain in ultrasound image
 - Analyzing wrong cells might lead to wrong diagnoses

- **Motivation:**
 - Improve the healing process by less insertions
 - Analyze the right cells

- **Solution:**
 - Software framework for needle and ultrasound tracking
 - Visualization to assist the surgeons

- **Areas of application:**
 - Biopsy for cancer screening or
 - Applications in neurology

- **Partners:**
 - Klinikum rechts der Isar (IFL)
 - FRAMOS GmbH

References: Image from FRAMOS GmbH
Requirements and specification

- Reading project based papers
- Receive and display ultrasound image
- Receive needle pose in real-time
- Calibrate needle, needle vector, ultrasound plane, ...
- Calculate intersection point and distances
- Create Qt user interface
- Implement 3D Vision
- Implement Features

Gantt Chart

NeedleTrackingSystem Software
NeedleTrackingSystem Software

References: 3D Image generated with Blender
Ultrasound guided biopsy with inside out tracking

Reference: Image from „Interdisziplinäres Forschungslabor, Universitätsklinikum Rechts der Isar“
Software structure

Reference: Diagram generated by UMLet, 26.01.2016
Sequence Diagram

Optical Tracking System (OTS)

Ultrasound Transducer

T₁

T₂

T₃

T₄

Biopsy Needle

Needle Tracking System
Calibrations

- **Pivot Calibration**
 (To get the transformation from needle to tip, fCal)
 Move the needle with fixed tip

- **Plane Fit**
 (To get the ultrasound plane, pcl)
 Collect several points on ultrasound plane

- **Line Fit**
 (To get the needle vector, pcl)
 Guide needle through a tube

- **Ultrasound startpoints**
 (Touch startpoints with needle tip)

Image references:

Calculations

\[P_1(x_1, y_1, z_1) \quad P_2(x_2, y_2, z_2) \]
\[P = P_1 + u(P_2 - P_1) \]
\[E : Ax + By + Cz + D = 0 \]

- Intersection between needle vector and ultrasound plane
 Where would the needle go inside?
 \[u = \frac{Ax_1 + By_1 + Cz_1 + D}{A(x_1 - x_2) + B(y_1 - y_2) + C(z_1 - z_2)} \]

- Distance between needle tip and ultrasound plane
 How far the needle has to get inserted?
 \[d = \frac{(Ax_1 + By_1 + Cz_1 + D)}{\sqrt{A^2 + B^2 + C^2}} \]

- Distance between target and needle vector
 How should the needle be rotated?

References:
Project Outlook

- Improve the calibration process
 (Integrate calibration process into software, Achieve better accuracy)

- Add additional features
 (Target, Screencast, Config files, Select the target)

- Complete the 3D visualisation and settings
 (Add navigation, Meshes for ultrasound and needle, Add options)

- Verify the software
 (Guarantee that everything works correct)

- Improve the tracking device
 (Smaller tracking device, Mounted on ultrasound transducer)

- Solve the needle problem
 (Stiffer needle, Consider physical model for needle deflection)
Project Retrospective

- Proof of concept is provided
- Not yet usable for real biopsies
- Much more work than expected
- Too much focus on presentations
Thank you for your attention!

Do you have any questions?