Pose Interpolation with Dual Quaternion Series

Ekaterina Kanaeva
ekaterina.kanaeva@tum.de

Supervisor: Benjamin Busam

Final Presentation
July 27, 2017
Goal of the project

- Implement algorithm for smooth interpolation of pose (rotation and translation) using dual quaternions

Interpolation based on four measurements [1]

Background and Motivation

• Real-time tracking systems benefits from interpolation
 - animation
 - multi-modal sensor

• Quaternions
 - robust
 - fast
 - efficient

• Dual quaternion for rigid-body motions
Methods and materials

• Cumulative basis [3]:
 - Bezier curve
 - Quadric Bezier curves (QB) [1]
 - Hermite curves
 - B-spline curves

• Aitken [1]

\[p(t) = \sum_{i=0}^{n} p_i B_i(t) \]

Experiments

• Aitken interpolation:
 - 51 poses, based on 3 measurements
 - 0.028 sec

• QB interpolation:
 - 51 poses, based on 3 measurements
 - 0.006 sec
Technical outline

• Programming languages
 - C++
 - Matlab

• Libraries
 - OpenIGTLink
 - Matio
 - Eigen
Sequence diagram

Matlab

--
generateData

Server

--
quaternions + translations data

Client

--
quaternions + translations data as matrix

visualized

interpolated data
Project risks and problems

- Schedule problems
 - incorrect time management
 - lack of time

- Technical problems
 - integration with matlab
 - integration of all components
Results

• Design a prototype
 ✔ choose appropriate mathematical model for pose interpolation
 ✔ implement algorithm
 ✔ integrate with FRAMOS OTS
 ✔ test system
• Adaptation for medical application
 - discuss with partners medical applications and choose one
 - adapt system to specific application
 ✔ compare results before and after interpolation
• Documentation/Report
Experiments and measurements

- Data from Framos OTS (287 poses)
- Maximum tracker speed 20 Hz max (new poses every 50 ms)
- Delay from image acquisition to sending is 50 ms.
- Time measurements: - 0.1 ms between control points
Learning outcome

- Dual quaternions
- OpenIGTLink interface
- Client-Server architecture