Pose Interpolation with Dual Quaternion Series

Ekaterina Kanaeva
ekaterina.kanaeva@tum.de

Supervisor: Benjamin Busam

Intermediate Presentation
Goal of the project

• Implement algorithm for smooth interpolation of pose (rotation and translation) using dual quaternions

Interpolation based on four measurements [1]

Background and Motivation

• Real-time tracking systems benefits from interpolation
 - animation
 - multi-modal sensor

• Quaternions
 - robust
 - fast
 - efficient

• Dual quaternion for rigid-body motions
Existing solutions

• Linear interpolation of Euler angles or rotation matrices
• Quaternions:
 - Linear interpolation
 - SLERP

• Dual quaternions:
 - Screw linear upsampling
 - Dual quaternion linear upsampling

Existing solutions. Examples

Spherical linear interpolation VS Linear interpolation
Existing solutions. Examples

- Linear interpolation for dual quaternions
Methods and materials

- Cumulative basis [3]:
 - Bezier curve
 - Quadric Bezier curves (QB) [1]
 - Hermite curves
 - B-spline curves

- Aitken [1]

\[p(t) = \sum_{i=0}^{n} p_i B_i(t) \]

Experiments. Aitken interpolation

51 poses, based on 3 measurements
0.028 sec
Experiments. QB interpolation

51 poses, based on 3 measurements

0.006 sec
Work Packages and Milestones

Gantt Chart [4]

[4] Created by smartsheets.com
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>S</td>
<td>M</td>
<td>T</td>
<td>W</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>S</td>
<td>M</td>
<td>T</td>
<td>W</td>
<td>T</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>S</td>
<td>M</td>
<td>T</td>
<td>W</td>
<td>T</td>
<td>F</td>
<td>S</td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td>T</td>
<td>W</td>
<td>T</td>
<td>F</td>
<td>S</td>
<td>M</td>
<td>T</td>
</tr>
<tr>
<td>W</td>
<td>F</td>
<td>S</td>
<td>M</td>
<td>T</td>
<td>W</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>S</td>
<td>M</td>
<td>T</td>
<td>W</td>
<td>T</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>F</td>
<td>S</td>
<td>M</td>
<td>T</td>
<td>W</td>
<td>T</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>S</td>
<td>M</td>
<td>T</td>
<td>W</td>
<td>T</td>
<td>F</td>
<td>S</td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td>T</td>
<td>W</td>
<td>T</td>
<td>F</td>
<td>S</td>
<td>M</td>
<td>T</td>
</tr>
<tr>
<td>W</td>
<td>F</td>
<td>S</td>
<td>M</td>
<td>T</td>
<td>W</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>S</td>
<td>M</td>
<td>T</td>
<td>W</td>
<td>T</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>F</td>
<td>S</td>
<td>M</td>
<td>T</td>
<td>W</td>
<td>T</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>S</td>
<td>M</td>
<td>T</td>
<td>W</td>
<td>T</td>
<td>F</td>
<td>S</td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td>T</td>
<td>W</td>
<td>T</td>
<td>F</td>
<td>S</td>
<td>M</td>
<td>T</td>
</tr>
<tr>
<td>W</td>
<td>F</td>
<td>S</td>
<td>M</td>
<td>T</td>
<td>W</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

Prototype
- mathematical model
- Interface to FRAMOS OTS
- Intermediate presentation

Medical application
- Medical adaptation
- Compare results

Verification
- Final presentation

Project management
- Time planning

[4] Created by smartsheets.com
Project risks

• Schedule risks
 - incorrect time management
 - lack of time

• Technical risks
 - integration with external system
 - not real-time performance
Activity Diagram

- Get data from OTS
- Have enough data?
 - Yes: Convert data, Interpolate, Send data to application
 - No: Wait for next data
- No: Wait for next data