Camera Pose Filtering with Local Regression Geodesics on the Riemannian Manifold of Dual Quaternions
Intuition

Smoothing 2D signal using local regression lines

Linearize pose space locally and perform similar smoothing
Pose Paremetrization of $SE(3)$

Motion as pose sequence in [dual] quaternion space

Quaternion and translation

$H_1 \times \mathbb{R}^3$

- Rotation part non-Euclidean
- Geodesics on hypersphere
- Rotation

$p \mapsto q \cdot p \cdot \bar{q}$

Pose Paremetrization of $\mathbb{SE}(3)$

Motion as pose sequence in [dual] quaternion space

Quaternion and translation

$\mathbb{H}_1 \times \mathbb{R}^3$

- Rotation part non-Euclidean
- Geodesics on hypersphere
- Rotation

$p \mapsto q \cdot p \cdot \bar{q}$

Dual Quaternion in \mathbb{DH}_1

$Q = r + \epsilon s$

- Non-Euclidean space
- Geodesics on Study quadric
- Displacement

$P \mapsto Q \cdot P \cdot \hat{Q}$

Robust Motion Stabilization

Principle component local regression

- H_1 and $D H_1$ are Riemannian manifolds
- Calculate log and exp
Robust Motion Stabilization

Local filter methods

1. PCA
2. wPCA
3. IRLS
Riemannian Geometry

Lie groups and parallel transport

- H_1 and DH_1 are Lie groups
- exp and log at identity are sufficient

Riemannian Geometry

Lie groups and parallel transport

- H_1 and DH_1 are Lie groups
- \exp and \log at identity are sufficient

$$\exp(Q) = \sum_{k=0}^{\infty} \frac{Q^k}{k!}$$

Experiment 1

Synthetic Data

Rigid Body Motion with Noise
Experiment 1

Synthetic Data
Rigid Body Motion with Noise
Synthetic Evaluation

Dual IRLS compared to other methods
Real Data Evaluation

Quantitative comparison

- Stereo tracking dataset [1]
- Natural hand movements in cooperative robotics
- Accurate pose sequence

➢ No dual-space gain for reliable data

Experiment 2

RGB-D Data
- Kinect Fusion Pose Filtering
Experiment 2

RGB-D Data

- Kinect Fusion Pose Filtering
Conclusion and Discussion

Results and Outlook

➢ Use shape of space for regression

Advantages

✓ Parameter-free online smoothing
✓ Outlier-aware IRLS method
✓ Dual quaternion robustifies filtering
Conclusion and Discussion

Results and Outlook

➢ Use shape of space for regression

Advantages

✓ Parameter-free online smoothing
✓ Outlier-aware IRLS method
✓ Dual quaternion robustifies filtering

Disadvantages

▪ Dense sampling needed

Future work

– Include pose uncertainty
– Video stabilization
THANK YOU!
Grazie mille!

Questions?

Poster Session at 2 pm