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Abstract

The location and management of rubbish bins is an important factor in maintaining
an environmentally safe, healthy and pleasant campus. Bins should be conveniently
placed where they capture the most rubbish whilst maintaining aesthetic and practi-
cal considerations. The location of the bins should also be such so that the emptying
of the bins can be done in a cost e�ective manner. We study this problem for the
University of Melbourne Parkville Campus. We describe the background to the
problem, the model we chose to use, our data collection strategy, the challenges
with this, and �nally our results and conclusions.
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1 Introduction

The client we selected was the University of Melbourne, and our client contacts were
Judith Alcorn (Waste Project O�cer) and Peter Wuelfert (Operations Manager,
SERCO.

The University of Melbourne was established in 1853 and is one of the oldest Uni-
versities in Australia. In 2009, there were 35,909 students enrolled and 7,325 full
time sta� (or equivalent) [MEL09]. The University has a number of campus loca-
tions with Parkville being the largest. SERCO is an international service company
and their work ranges from the management of facilities, projects and IT systems.
This includes the �nancing, design and build of new facilities, including hospitals
and transport systems, as well as their day-to-day operation. They run scienti�c
establishments, and provide critical information to manage tra�c, maintain build-
ings and operate railways. SERCO provides open space maintenance services to
Melbourne City Council as well as the University of Melbourne [SER11].

The activity we seek to improve is the placement of rubbish bins on campus, the
schedule of pickups from the bins and the routing of the vehicle performing the
pickup. The location and management of rubbish bins is an important factor in
maintaining an environmentally safe, healthy and pleasant campus. Bins should
be conveniently placed where they capture the most rubbish whilst maintaining
aesthetic and practical considerations. The location of the bins should also be
such so that the emptying of the bins can be done in a cost e�ective manner. For
pragmatic reasons, we chose to handle this as two optimisation problems: �rst, bin
location and pickup scheduling and, second, optimising the route given a pickup
schedule. As well as giving an easier problem to model, it also re�ects the real life
aspect that the actual emptying of the bins is done as part of other activity by the
ground sta� and so is only loosely tied to the actual locating of the bins. If we were
to apply this model to other problems such as location of ATM (i.e. cash machines),
where the routing of the security personal needs to be more carefully controlled,
then a tighter integration between the two problems would be needed.

We considered only the external bins used by the general campus population and
were not concerned with the location of the larger skip type bins nor bins within
buildings. Also, the rubbish we included in our study was generally food container
waste that we divided into land�ll waste and recyclable waste. We ignored hazardous
waste or 'hard rubbish'. We aimed to minimise the `inconvenience cost' of putting
rubbish into bins. For the routing problem, we aimed to minimise total route length
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1 Introduction

for each pickup whilst meeting the required pickup schedule.

In devising the model, we considered a number of factors arising from our own
observations and assumptions as well as input from discussions we had with Judith
Alcorn and Peter Wuelfert. One of the �rst tasks was to devise a network model to
provide a framework to the problem. The network model makes use of map data of
the Parkville campus and we developed a program in XpressMP [FIC09] to present
this map. The program is also a data processing platform to process our raw survey
data into the input parameters to the model. Edges in the network model are roads
or pathways and vertices in the model are intersections of roads or pathways on
campus. We gathered tra�c data and developed a tra�c model across the network
to assist with generating the parameters for the model. Other data we gathered
was data on seating areas, shop locations and the locations where rubbish from the
pickups was dropped o�.

Our results showed a reduction by over a third in the �inconvenience cost�. The
optimisation provides a solution that gives us locations for 40 bin locations of which
24 are not currently used. Currently, 37 bin locations are used.

In the course of the project, and in particular the data gathering phase, we deter-
mined that there is likely to be a large variability to the tra�c and food consumption
patterns on campus. In particular, we were told by Peter that di�erent weather con-
ditions lead to di�erent patterns in rubbish generation. Other sources of variability
are:

1. People's choice of co�ee and lunch purchases

2. People's walking patterns

The remainder of this report is divided up as follows: Chapter 2 presents the problem
background and considers the factors in�uencing the location of bins and scheduling
of pickup. Chapter 3 presents the model as a mathematical model, Chapter 4
discusses our data collection process, Chapter 5 presents the results and �nally
Chapter 6 presents the conclusions.

We would like to thank Judith Alcorn and Peter Weulfert for their assistance with
this project and taking the time to answer our questions and to meet with us.
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2 Proposed Improvements

This chapter discusses in a general context the bin location and scheduling problem
introduced above and the factors we did and did not model. We seek to determine
if an improvement can be made to the location of bins on campus and to provide
advice on the pickup schedule and collection routing. One aspect that we were
careful about was to make sure the model was such that we did not obtain extreme
solutions such as having a bin everywhere, having only a few bins at key locations
or emptying the bin every hour. In subsequent sections we discuss rubbish and how
it is generated, factors in�uencing bin placement and the rubbish pickup process.

2.1 Rubbish and Rubbish Generation

The rubbish we considered was the rubbish arising from the purchase of co�ee, other
beverages and take away food. The source of these items are food outlets on campus.
We distinguished between two types of rubbish - waste and recyclable.

In the work, we used the idea of rubbish generation: Rubbish is generated at the
point where it is ready to be placed into a bin. For example, the location where a
co�ee cup is �nished with is the point where the rubbish is generated. The location
where co�ee or lunch was purchased is not necessarily the point where the rubbish
was generated. We make this distinction as people will often take their lunch to a
seating area to consume or take their co�ee with them on the way to a lecture.

We term co�ee and beverage containers to be `walking rubbish' and take away food
`seating rubbish'. We make this distinction because the generation of these types of
rubbish is a little di�erent: Walking rubbish arises from items that can be consumed
on the move and will spread out from the point of purchase. Seating rubbish arises
from items like take-away food and is consumed at seating areas. When the meal is
completed people prefer to place this as soon as possible in the nearest bin.

We make the following assumptions about behaviour: First, people prefer to have a
bin that is on the way to wherever they are going. If someone �nishes with a co�ee
cup they prefer a bin that is along the route they will be going to their next lecture
or other activity. Second, people will, in general, do the right thing and will not
drop rubbish immediately they don't �nd a convenient bin; they might be annoyed
that there is not a bin nearby but they will make an e�ort to �nd a bin. Only if they
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2 Proposed Improvements

can not �nd a bin after a time will they drop the rubbish on the ground. To model
the idea of rubbish generation locations along with our assumptions about people's
behaviour, we use a tra�c model and the idea that edges in the network with low
tra�c have a high service cost when considering how rubbish travels from points
where it is generated to a bin. Service cost represents the inconvenience factor of
taking rubbish from one vertex to another. Terming this an inconvenience is perhaps
making it a little unclear as strictly speaking inconvenience would just be the length
of the edge however by introducing the actual �ow of the tra�c we are introducing
a likelihood factor as well - rubbish is more likely to travel along an edge based on
the tra�c along the edge and the length of the edge. We turn this around to turn it
into a cost to make the model simpler to understand and work with mathematically.

2.2 Bin Location

This section discusses in general factors that in�uence bin placement. These are a
combination of interview input and our own observations and assumptions.

There are a number of factors to consider when placing rubbish bins:

1. The bin needs to be placed at a location where it is e�ective in capturing
rubbish. These will be in high tra�c areas that are close to where rubbish is
generated.

2. The bin needs to be easy to access. There is no point in placing a bin on a
little used pathway or tucked away behind some building even if it is close `as
the crow �ies' to a high tra�c or rubbish generation area.

3. There are aesthetic considerations when placing bins. Placement of bins out-
side historic buildings or in highly visible locations is discouraged. Placement
of bins should be balanced between discrete and accessible.

4. Bins should be placed so that they can be emptied conveniently.

The bins we considered are external bins for the use of general campus population for
placement of rubbish. They are placed along walk ways and around seating areas.
We did not consider the large rubbish bins located outside buildings nor general
use rubbish bins inside buildings. We ignored constraints on bin placements due
to aesthetic reasons although this would be fairly easy to include in the model: we
would assign a cost to placing a bin at a location (or exclude the location entirely
as one where a bin could not be placed).

For placement, we only permitted placement at vertices of the network model. In
reality bins can be placed along edges however our edges are relatively short and
placement of a bin at one end of an edge rather than along an edge is a reasonable
approximation.

4



2 Proposed Improvements

2.3 Rubbish Pickup

Rubbish bin collection around campus is undertaken by the SERCO ground sta� who
also perform other activities throughout such as leaf collection. Rubbish from bins is
collected using a large golf-cart type buggy and taken to a number of locations where
there are large skip-type bins. The cart can take rubbish from 12 full bins (giving
a capacity of 1440L) and is parked over night in the South Lawn Underground
Car Park. The cart is also used for other activities during the day and parked
somewhere on campus whilst doing other things (for example collecting litter on
ground). Although there are multiple carts used by grounds sta�, only one of these
has the required compartment to carry rubbish bags.

The pickup schedule is governed at a high level by the contract SERCO have with
the University. For high pro�le areas, bins need to be emptied at least twice a day.
These areas are: South Law, Professor's Walk, Concrete Lawn, The Old Quad, In
front of Wilson Hall. The bins in those places have to be emptied the �rst time at
9am (note that this constraint was not included in the model). In other places, the
bins have to be emptied at least once a day. The same sta� collect litter lying around
(on the ground) when they see some. There is a one person assigned to collect the
rubbish out of a team of eight people and at least one person has to be on campus
for four hours a day. Sometimes there is a need to collect rubbish on Saturday
and/or Sunday as well special events. Given that the rubbish bin collection has
some component of �exibility and is included in other daily activities, we decided
that the routing would be included as `weak' constraints in the location model. In
other words, we incorporated only enough constraints to ensure that routing would
not be unacceptably expensive.

The following are some of the considerations:

1. Bins are emptied enough times to ensure bin does not become full / over�ow.

2. Bins are not emptied unnecessarily.

3. Fuel and servicing, capital costs and labour costs.

For our problem we included containts 1 and 2. We modelled per trip cost based
on distance travelled but ignore �xed costs for vehicles since the vehicles are still
needed for other purposes.

Figure 2.1 shows a representative fragment of the network model we used. Vertices
are shown with their rubbish generation counts for a single time period. Along each
edge we show the tra�c for the same time period in both directions. The nodes
marked with an S are seating nodes.
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Figure 2.1: Network Fragement Showing Various Parameters

The following chapter details the mathematical model that we developed based on
the above discussions.
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3 Solution Methodology

3.1 Overview

This section outlines our approach from a high level. The following sections will
describe the components of the solution in more detail.

Figure 3.1 illustrates the structure of the problem, showing the main relationships
between components. The input to the problem is demand, in the form of rubbish
to be put in a bin. This demand, together with the chosen locations and the pickups
scheduled, will determine the amount of rubbish in each bin over time. Both bin
location and collection scheduling also a�ect the routing problem. The best route
between a set of bins obviously depends on the locations of the bins, and the collec-
tion schedule determines which bins will be collected during the same time interval,
and therefore which bins should be visited on the same route. The optimisation
objectives appear in the bottom of the �gure. These are convenience, which is a
direct result of which bin has space to receive which rubbish, and collection cost,
which depends on the number and length of collection routes.

Figure 3.1: Problem structure and interactions
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It is important to note that the locations of the bins interact with each other. We
assume that people will put rubbish in the most convenient bin that is not full.
Therefore the amount of rubbish put into a particular bin depends not only on the
location of that bin, but also on the locations of other nearby bins, and the amount
of rubbish currently in those bins. If a di�erent location is chosen for bin i, another
bin may become the preferred bin for rubbish that would previously have been put
in bin i. This means that the location of one bin cannot be considered in isolation
from the locations of all of the other bins. Furthermore, the amount of rubbish in
a bin, and therefore its availability to accept more rubbish, depends on when the
last pickup was scheduled for that location. If the scheduled pickup time for a bin
location changes, that bin may be able to accept more or less rubbish at this time,
which will have an impact on the volume of rubbish in other bins nearby.

The two objectives identi�ed above clearly compete with one another. The most
convenient solution will have a high collection cost, and the least expensive solution
is likely to be very inconvenient. We considered weighting the objectives, but decided
instead to prioritise convenience, while limiting the collection cost to an acceptable
level. We had several reasons for this decision. Firstly, as convenience is not easily
valued in terms of money, we felt that any weighting we invented would be fairly
arbitrary. Secondly, from discussions with our University of Melbourne contact,
we believe the university is currently most concerned with improving the usage of
bins (especially recycling bins), and keeping the campus presentable, rather than
reducing cost. We felt that prioritising convenience would be more in line with
these goals, as more convenient bin locations should lead to better bin usage and
less litter on the ground. Finally, given the current arrangement with SERCO, there
is not much scope for optimisation of collection routes. Rubbish collection is not
typically performed as a separate task but rather mixed in with other tasks of the
ground sta�. This makes it di�cult to accurately re�ect the real cost of rubbish
collection, which we felt was a good reason to avoid using that cost as our main
objective.

An attempt to solve the entire problem using one monolithic model con�rmed our
expectation that the problem is too large to be handled this way. We therefore
decided to split the model into two pieces. Our chosen approach is illustrated in
Figure 3.2. The decision to prioritise convenience, and the tight coupling of the
bin location and pickup scheduling problems, made the routing problem an obvious
choice to be taken out and treated separately. Our approach was to �rst tackle the
bin location and pickup scheduling problems together, aiming to maximise conve-
nience, and then to feed the results into a set of routing problems, one for each time
period during which any bins were scheduled for collection. Each routing problem
had as input a set of bins to be visited, with each bin having a speci�ed location
and volume of rubbish to be collected.

It is worth noting that the routing results are unlikely to be put into practice. Our
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3 Solution Methodology

Figure 3.2: Our approach to the problem

model is only a very rough approximation to the way bins are collected in reality.
As mentioned above, grounds sta� tend to use the vehicle for other purposes during
the day as well as collecting bins, and while collecting bins they will often stop to
perform tasks such as picking up litter on the ground. Furthermore, because the
campus is quite a small area, optimal routes would not necessarily be a signi�cant
improvement over the current process. Simple heuristics naturally employed by the
driver such as "I'm driving past, so I may as well pick up this bin now," and "while
I'm over this side of the campus I'll get that bin so I don't have to come back
later," may well be su�cient to produce reasonable routes. However, we decided to
go through the routing process anyway, because although the routes produced are
unlikely to be actually used, they do serve to demonstrate the feasibility of our bin
location and pickup scheduling solution, and may be helpful as a guide for contract
negotiation between the University of Melbourne and SERCO.

3.2 Bin Location and Collection Scheduling

Our objective for the bin location and collection scheduling subproblem was to
maximise convenience. We achieved this by assigning an 'inconvenience cost' of
putting rubbish generated in a particular location into a bin at another location,
and minimising the total cost incurred by the solution.
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3 Solution Methodology

The mathematical program we used is shown below, and the key points are discussed
here.

The model uses a network of nodes, some of which generate rubbish (the set LR),
and some of which are potential bin locations (the set LB). Most nodes in our
data belonged to both sets, but some nodes (for example nodes on lawns) are not
potential bin locations.

We considered two bin/rubbish types; recycling and general waste. We assume that
rubbish of a particular type can only be put in a bin of that same type.

The bin size in litres is given, and there is a limit on the number of bins of the same
type which may be placed in the same location. We used a value of 2 for this limit,
as we observed that most current bin locations have one bin of each type, but some
have an extra bin of one or the other type.

We divided time into discrete intervals, considering one full day with 10 time periods.
The time periods correspond to roughly one hour each, but we excluded the night
time hours as there is not much rubbish generated at night, and we also don't want
to schedule collections at those times. The amount of rubbish in a bin after the last
time time interval carries over to the �rst time interval. Since we are only considering
one day at a time, this wrapping around enforces at least one collection of every
bin every day. This restriction is not a problem as it is already university policy to
empty bins every day. However, limiting the time period to one day does limit the
�exibility of the solution; we are assuming that the same collection schedule will be
used every day, and therefore it isn't possible, for example, to visit a bin location
for collection an average of 1.5 times per day.

Our main variables were a set of real variables xijkt specifying the volume of rubbish
of type k generated at location i put in a bin at location j during time t, and a set
of binary variables yjt indicating whether or not a pickup was scheduled for bins at
location j at the end of time interval t.

We also had two sets of variables rBjkt and rAjkt specifying the volume of rubbish of
type k present in bins at location j after time interval t, respectively immediately
before and immediately after the scheduled pickups for that time period are carried
out.

Standard demand and capacity constraints (constraints 3.1 and 3.2) were used to
ensure that all rubbish was put in a bin, and that no bin location had more than
the maximum allowed volume of rubbish at any time. The actual number of bins
assigned to a location was calculated afterwards by �nding the maximum volume of
rubbish at the location over all times, and choosing the smallest number of bins to
meet this requirement.

Constraints 3.3, 3.4, 3.5 and 3.6 enforce consistency of the volume of rubbish at bin
locations over time. The volume of rubbish in a bin at a particular time immediately
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3 Solution Methodology

before rubbish collection is calculated by adding the amount of rubbish put in the
bin during this time step to the rubbish already there after rubbish collection in
the previous time step. The volume of rubbish at a bin location immediately after
rubbish collection is 0 if a pickup is scheduled for this location at this time, otherwise
it is the same as the volume of rubbish before rubbish collection.

In order to limit the collection cost resulting from a solution to this part of the
problem, we added two extra constraints on the pickups scheduled.

• Constraint 3.7 limits the total number of pickups scheduled across the day.
This prevents a solution with excessive bin collection, and also serves to limit
the total number of bins, as all locations with any rubbish must have at least
one pickup scheduled.

• Constraints 3.8 and 3.9 put a restriction on the number of time intervals during
which pickups may be scheduled, to prevent the spreading out of pickups across
the day, which is ine�cient when it comes to routing. We set the limit at 4
collection routes per day, as currently the grounds sta� are required to be on
the campus for four hours each day.

11



3 Solution Methodology

Let

LB be the set of potential bin locations

LR be the set of locations at which rubbish is generated

B be the set of bin/rubbish types

S be the capacity of a bin in litres

N
be the maximum number of bins of the same type
allowed to be placed in the same location

P be the maximum number of pickups to be scheduled in total

Q be the maximum number of times during which pickups are scheduled

Cij be the cost of using bin j for rubbish generated at location i

Rikt
be the amount of rubbish of type k generated at location i
during time interval t (in litres)

A be the �rst time period under consideration

Z be the last time period under consideration

T = {A · · ·Z} be the set of time periods under consideration

Let

xijkt
be the volume of rubbish of type k generated at location i
which is put in a bin at location j during time t

rBjkt
be the volume of rubbish of type k in bins at location j
at time t, immediately before rubbish is collected

rAjkt
be the volume of rubbish of type k in bins at location j
at time t, immediately after rubbish is collected

yjt =

{
1 if a pickup is scheduled for bins at location j at time t
0 otherwise

pt =

{
1 if t has been selected as a time to schedule pickups
0 otherwise

Figure 3.3: Parameter and decision variable de�nitions for bin location and
collection schedule subproblem.
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3 Solution Methodology

minimise
∑
i∈LR

∑
j∈LB

∑
k∈B

∑
t∈T

Cijxijkt

s.t.

∑
j∈LB

xijkt ≥ Rikt ∀i ∈ LR, t ∈ T, k ∈ B (3.1)

rBjkt ≤ NS ∀j ∈ LB, k ∈ B, t ∈ T (3.2)

rBjkt ≥ rAjkt−1 +
∑
i∈LR

xijkt−1 ∀j ∈ LB, k ∈ B, t ∈ T : t > A (3.3)

rAjkt ≥ rBjkt −NSyjt−1 ∀j ∈ LB, k ∈ B, t ∈ T : t > A (3.4)

rBjkt ≥ rAjkZ +
∑
i∈LR

xijkZ ∀j ∈ LB, k ∈ B, t = A (3.5)

rAjkt ≥ rBjkt −NSyjZ ∀j ∈ LB, k ∈ B, t = A (3.6)∑
j∈LB

∑
t∈T

yjt ≤ P (3.7)

∑
t∈T

pt ≤ Q (3.8)

yjt ≤ pt ∀t ∈ T, j ∈ LB (3.9)

xijkt ≥ 0 ∀i ∈ LR, j ∈ LB, k ∈ B, t ∈ T (3.10)

rBjkt ≥ 0 ∀j ∈ LB, k ∈ B, t ∈ T (3.11)

rAjkt ≥ 0 ∀j ∈ LB, k ∈ B, t ∈ T (3.12)

yjt ∈ {0, 1} ∀j ∈ LB, t ∈ T (3.13)

pt ∈ {0, 1} ∀t ∈ T (3.14)

Figure 3.4: Mathematical model for bin location and collection schedule
subproblem.

3.3 Collection Routing

For the routing problem the input is a set of bins to be visited, each bin having a
location and a volume of rubbish to be collected. Our objective is to minimise the
route length.1 Our �nal mathematical formulation is included below.

1We refer to [XAP07], pp. 148 for the initial attempt at a model, since we re�ned our approach
from there.
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3 Solution Methodology

The routing network has vertices of several di�erent types. There is a set of depots
D, a set of bins B, and a vertex P representing the car park. The set of all vertices
is referred to as A.

Only one vehicle is used because only one of the grounds maintenance carts has
the correct compartment to carry rubbish bags. The vehicle starts at the car park
vertex, then travels to a bin. From a bin the vehicle may travel to another bin, or to
a depot, where it will drop o� all rubbish collected so far. From a depot, the vehicle
may visit another bin, or return to the car park, ending the route.

We used binary variables xij indicating whether or not the edge2, from vertex i to
vertex j was used in the solution. We also had variables yij indicating the load of
the vehicle on the edge from vertex i to vertex j. Note that although some depots
may be visited more than once, no edge can be used more than once, because no
edges are allowed between depots.

Constraints 3.15, 3.16 and 3.17 were used to eliminate edges from the solution as
follows.

• Loops, where both ends of an edge are the same vertex, are not allowed.

• Edges leading from the car park to a depot are not allowed as the car is empty
so there is no bene�t in going to the depot.

• Edges leading from a bin to the car park are not allowed as the vehicle should
be parked empty, so it needs to visit a depot immediately before parking.

We assume that when a bin is visited all rubbish is collected. Therefore, each bin
should be visited exactly once (constraints 3.18 and 3.19).

The vehicle must leave the car park on exactly one edge leading to a bin (constraint
3.20) and return on exactly one edge from a depot (constraint 3.21).

A depot may be visited multiple times or not at all, as long as the number of edges
in is the same as the number of edges out (constraint 3.22).

Constraint 3.24 ensures that when a bin vertex is visited, the rubbish to be collected
is added to the load of the vehicle when it leaves. The load on the vehicle is restricted
to its capacity using constraint 3.23.

At a depot vertex the load when leaving is always 0 because all of the rubbish should
have been dropped o� (constraint 3.25). Note that we assume in�nite capacity of
the skip bins at depots.

2Note that the network used here is di�erent from the network discussed in the previous
section. For the collection routing the network involves primarily just the bins. The edge lengths
are precalculated by the BinNetwork program using shortest path between the bins.
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3 Solution Methodology

Let

V be the vehicle capacity in litres

P be the location of the car park

D be the set of depots (rubbish drop o� locations)

B be the set of bins to be visited

A = B ∪ D ∪ {P} be the set of all vertices in the network

Dij, i, j ∈ A be the length of the shortest path from vertex i to vertex j

Ri, i ∈ B be the litres of rubbish to be collected from each bin

Let

xij =

{
1 if the edge from vertex i to vertex j is used in the solution
0 otherwise

yij
be the load in litres of the vehicle when it travels along
the edge from vertex i to vertex j

Figure 3.5: Parameter and decision variable de�nitions for routing subproblem.

15



3 Solution Methodology

minimise
∑
i,j∈A

Dijxij

s.t.

xii = 0 ∀i ∈ A (3.15)

xPi = 0 ∀i ∈ D (3.16)

xiP = 0 ∀i ∈ B (3.17)∑
i∈A

xij = 1 ∀j ∈ B (3.18)∑
i∈A

xji = 1 ∀j ∈ B (3.19)∑
i∈B

xPi = 1 (3.20)∑
i∈D

xiP = 1 (3.21)∑
i∈A

xij =
∑
i∈A

xji ∀j ∈ D (3.22)

yij ≤ V xij ∀i, j ∈ A (3.23)∑
j∈A

yij =
∑
j∈A

yji +Ri ∀i ∈ B (3.24)

yij = 0 ∀i ∈ D, j ∈ A (3.25)

xij ∈ {0, 1} ∀i, j ∈ A (3.26)

yij ≥ 0 ∀i, j ∈ A (3.27)

Figure 3.6: Mathematical model for routing subproblem.

This set of constraints does not prevent subtours within our route, despite our use
of load variables. The load variables prevent cycles involving only bin vertices, but
because we have multiple depots it is still possible to get a nonsensical solution with
a subtour involving a set of bins and one or more depots. To combat this we added
subtour breaking constraints on the �y, using a very simple algorithm (Algorithm
1). The algorithm runs the problem in a loop, �nding the optimal solution allowing
subtours, then checking the resulting graph to determine whether or not all bins
are connected to the car park. The set of all vertices connected to the car park C,
is discovered using depth �rst search. If there is at least one bin not connected to
the car park, the algorithm adds a constraint to ensure that at least one edge is
included between the set of nodes connected to the car park, and the set of nodes
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3 Solution Methodology

not connected to the car park. This constraint is correct, since for any subset S ⊂ A
including a bin and not the car park, a valid route must include at least one edge
leading from A \ S to S.

repeat

solve the optimisation problem;
addedConstraint := false;
C := ∅;
explore (P );
if ∃b ∈ B : b 6∈ C then

add constraint:
∑
i∈C

∑
j∈A\C

xij ≥ 1;

addedConstraint :=true;

end

until addedConstraint = false;

Algorithm 1: Subtour Elimination

Input: A vertex v
C := C ∪ {v};
foreach edge (v, u) used in the current solution do

if u /∈ C then

explore(u);
end

end

Function explore(v)
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4 Data Collection

In the previous chapter we developed a comprehensive model for the problem with
a number of components which will allow us to compute an optimised solution for
rubbish bin placement at the University of Melbourne and to calculate a pickup
schedule for rubbish collection. The next step is to �nd values for the model pa-
rameters. We start by describing the di�erent data types required and discuss how
we collected them. Due to the high amount of data needed and the limited time
available, there were a number of problems and issues, which we discuss.

4.1 Required Data

As mentioned in Section 2.1, we ignored special types of rubbish and considered
only two di�erent types: recycling rubbish and land�ll waste. From observations on
campus and after talking to Peter Wuelfert, a reasonable approximation to di�er-
entiate these two types is given in the Table 4.1 which we apply right at the end of
our calculations.

Waste rubbish Recycling rubbish
60% 40%

Table 4.1: Distribution of waste and recycling rubbish

4.1.1 Rubbish Generation

As an approach to achieve a reliable data collection we approximate all generated
rubbish by considering only two distinct types of rubbish:

• �Walking rubbish�

• �Sitting rubbish�.

�Walking rubbish� is given by items such as co�ee cups purchased at one of the
co�ee outlets and spread out by people taking the cups with them. Therefore,
the amount Awalking rubbish of �walking rubbish� at a particular node i in the graph
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4 Data Collection

G = (V,E) representing the campus pathways must be related with the amount of
people walking along edges connected to the vertex i and the amount of sold co�ees
St in the stores at a certain time t.

Furthermore people on campus might bring their own food or buy a meal or a
beverage on campus to eat or drink it in certain spots. Hence �sitting rubbish�
means rubbish which is generated by food or beverages in disposable containers at
certain seating area vertices, such as nodes near one of the lawns or nodes directly in
front of food stores with a seating area. Of course, this rubbish may have originated
from a shop further away, but we can ignore this fact. For our work, we assume
that �sitting rubbish� is generated directly at a seating area j and the amount
Asitting rubbish of this rubbish type produced at a particular node is correlated with
the amount of people sitting there at a certain time t.

In the following we will present a way to approximate Awalking rubbish and Asitting rubbish

in order to calculate the total rubbish generation Rit = Awalking rubbish
it +Asitting rubbish

it

at vertex i for time period t.

If i is a seating area we will calculate:

Rit =
1

5
St

Iit∑
j Ijt

+W s
it (4.1)

if i is not a seating area then the calculation is

Rit =
1

5
St

Iit∑
j Ijt

(4.2)

Where Iit is the tra�c count entering vertex i at time t, St is the total co�ee count
across campus at time t and W s

it is the seating count for vertex i at time t. Division
is by �ve as we take it that on average there are �ve rubbish items per litre.
Rubbish generation by type is calculated due to (4.1) i.e.

Rw
it = 0.6 Rit (4.3)

Rr
it = 0.4 Rit (4.4)

Next we discuss other data we needed and how we obtained it.

4.1.2 Service Cost

In this section we want to �nd a formula to calculate the service cost. The Service
cost Cijt is a value which gives the inconvenience of rubbish created at node i being
put in a bin at node j. It is proportional to the distance of the nodes, i.e. whenever
the node distance of considered nodes increases, Cijt will increase as well; and vice
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4 Data Collection

versa. Moreover it is inversely proportional to the tra�c amount between i and j.
Whenever the number of people walking from one node to the other is high, Cijt

will be small, and when the number of people is low Cijt will be large. We compute
the service cost with respect to the distances of two nodes and the tra�c amount
between those nodes.

Cijt is the service cost from vertex i to vertex j for time period t. Vertex i is from
the set of all possible locations where rubbish can be generated and j is from the
set of all potential bin locations.

Cijt =
∑

e∈P (i,j)

De

Tet

(4.5)

where P (i, j) is the set of edges for the shortest path from i to j, De is the length
(i.e. distance) along the edge e and Tet is the tra�c along e at time t.

4.2 Data Collection

With the thoughts from the section above, we can conclude that we need data in
three di�erent types:

• People leaving a shop with bought food / beverages

• People sitting at a seating area

• People walking on an edge

the problem is, we need several data values for every node and every edge; and this
not only once a day, but for all considered time steps. Since we have 139 vertices
with 179 edges and 9 di�erent times of a day this is simply not measurable in a
reasonable amount of time. Therefore we extrapolated measured data using several
data samples.

4.2.1 Data Pro�les

Since it would take too much time and e�ort to measure the data at every node for
every considered time period, we decided to build representative data samples in
order to extrapolate other single measurements. We proceeded as follows:

At �rst we did several whole day observations at selected nodes and edges. The
�selected� nodes were nodes for food stores which are frequently visited, seating
areas with a higher amount of people and edges with many pedestrians. Those
were considered to be relatively representative for all the other nodes and paths
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4 Data Collection

09:00 10:00 11:00 12:00 13:00 14:15 15:15 16:15 17:15

People leaving with food - Place 1: Professor's Court Cafï¿½
8 11 16 15 14 13 11 5 0

People sitting - Place 1: Professor's Court Cafï¿½
9 9 8 3 8 17 11 23 13

People walking - Place 1: Node 56 to 59
25 66 68 90 63 40 60 53 29

Table 4.2: Whole day observations for di�erent data types

of the same type. Furthermore we assume here that food and drink consumption
in all seating areas resembles the co�ee consumption and the demand in all stores,
and that the walking pattern at all edges behaves equally over the day; merely the
magnitude di�ers. To write things more generalized now, we introduce a set (4.6)
for the di�erent data types

P = {b, s, w} , (4.6)

where the letters represent data for

• b - people leaving a shop with bought food / beverages

• s - people sitting at a seating area

• w - people walking along an edge.

What we actually did then was to measure the number of people at the chosen nodes
for every considered time and for each data type separately. We used an observation
time of �ve minutes for b and w, and since there was not much movement at seating
areas, for s we just took a point sample. Some of the resulting data are shown in
table (4.2).1 In order to create the pro�le we begin by calculating the maximum
value (4.7) for every sample i ∈ I = {1, 2, . . . , n} of type p.

V p
i,max := max {V p

it | t ∈ T} , (4.7)

where T is the set of considered time periods.
We then normalize the other values by V p

i,max according to

Ṽ p
it =

V p
it

V p
i,max

∀t ∈ T. (4.8)

1The other collected data for the pro�les can be found in the appendix (7).
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4 Data Collection

Then our general pro�le for data type p is given by

Gp
t =

∑
i Ṽ

p
it

|I| ∀t ∈ T. (4.9)

In fact, we used |I| = 2 for p ∈ {b, s} and |I| = 4 for p = w and got the general
pro�les shown in (4.1).
With (4.9) and just one observation W p

t0 of a node or edge at a particular time

Figure 4.1: General pro�les due to whole day observations

t0 ∈ T, we are able to extrapolate the values for all other time periods using the
pro�le via (4.10).2

W p
t =

W p
t0

Gp
t0

Gp
t ∀t ∈ T (4.10)

After calculating all needed data, we can use it as an input for our model and run
the optimiser.

2The completed data calculation can be found in the �les �Tra�cData.dat� and
�RubbishModelData.dat�.
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5 Results and Discussion

With the data we obtained from our calculation according to Chapter 4 we ran the
program to optimise the problem for 24 minutes. Figure (5.1) shows the branch
and bound representation tree and the progress of the MIP search during the op-
timisation process. Below we present results for both the rubbish bin placement

Figure 5.1: Branch and bound and progress of the MIP search

on campus and the pickup scheduling. The statistics according to the mixed linear
program optimisation are shown in �gure (5.2). It can also be seen there, that the
best solution after 24 minutes had an �inconvenience cost� of 30,224.5.

5.1 Solutions and Improvement

Currently there are are in total 37 bin locations on the campus. Our optimised
solution used a total of 40 bin locations of which 24 are not currently used, whereas
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5 Results and Discussion

Figure 5.2: Branch and bound and progress of the MIP search

16 locations match with the current situation. Figure 5.3 gives an overview of a

Figure 5.3: New and old bin locations

campus section showing the old and new locations and indicating where they match.

Compared to the results of our model given the current bin placement and using
the optimisation we get the improvement in inconvenience cost shown in table (5.1).
This shows that we could improve the inconvenience cost by over one third.

The bin pickup scheduling is shown in table (5.2) The detailed routes and the other
data can be seen via the graphical user interface of XpressMP as explained in the
Appendix.

Beyond that, this GUI makes the data end-user friendly and there is no need for the
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5 Results and Discussion

Convenient costold: 45,537.5
Convenient costnew: 30,224.5

Improvement: 33.63%

Table 5.1: Comparison of convenient cost and improvement

1. route 11:00 campus south-east
2. route 13:00 big tour and campus west
3. route 15:15 mid-campus tour
4. route 16:15 campus east

Table 5.2: Bin pickup scheduling and routes

client to know the source code or to understand the used algorithms completely.
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6 Conclusion

In this concluding section we discuss a number of challenges we faced, particularly
around the reliability of the data, and hence the �nal results, and provide an indi-
cation of other areas the model can be applied to.

As described above, we calculated the model parameters by extrapolating from a
single time point sample using a pro�le captured at a small number of locations
for all time periods. This is clearly an approximation and there is no guarantee
that the pro�le at one location matches another. Another factor that introduces
uncertainty in our outcomes is that the tra�c along edges and rubbish generated at
each vertex has a stochastic nature. For example, we have been told by Peter that
there is a noticeable increase in the rubbish on warm days compared to cooler days.
Furthermore, we only considered time periods of an hour and across a single day. It
is quite possible considering that people have di�erent lectures on di�erent days of
the week and have lunch at di�erent venues that there is consistency between weeks.
After all, lecture time tables are weekly and possibly people have weekly habits for
their eating venues. Regardless of how much more data collection we do in future
and how much of a stochastic model we introduce, one of the �rst tasks would be to
understand the variability so that we could at least frame our results in some sort
of con�dence interval.

An activity that can be done without gathering more data is doing sensitivity anal-
ysis on the model. By this we mean how much do the results of the optimisation
change given changes to the input data. In the previous paragraph, we discussed
our concerns about the variability in the tra�c and other data. These concerns can
be quanti�ed by using such an analysis. A method for implementing this analysis
would be to run a loop where random changes are made to the input data and the
model rerun. The changes allowed would need to be constrained - for example we
would ensure that total tra�c was not changed to exceed the number of people on
campus or that the total rubbish generated did not exceed the total rubbish col-
lected by the external contractors. This could be run over a long period provided
computing resources are available.

We provided only an approximate split between recycling waste and land�ll waste
based on a simple observation of how full a recycling bin was compared to its neigh-
bouring land�ll bin. Further observations would be needed to obtain a more accurate
breakdown. Further detail would also be gained if we provided a more detailed break
down of rubbish type. In this project we considered only co�ee cups and disposable
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6 Conclusion

lunch waste. Our data collection also ignored rubbish that might have been brought
onto campus, rubbish taken o� campus (this would be negligible) and also rubbish
that is deposited in bins inside buildings.

With regards to the network model and in particular the edges, we did not exclude
from the pickup cart routes the edges that are steps or are unsuitable for the cart.

It is interesting to note that during the course of the project the University has been
undertaking a number of initiatives to improve the management of waste. These
are to encourage the use of non-disposable co�ee containers and the placement of
more recycling waste bins (in the form of `wheelie bins'). Furthermore, it is clear
that in society as a whole there is slow change toward better management of waste.
This would mean that if this project was run again next year, the results might be
di�erent.

Our model has application in other areas where determining a location of some
facility and then scheduling visits to that facility is required. For example one other
application is vending machine siting. This is the problem of determining sites
for vending machines such that the sales from the machine are high and balanced
against the cost of visiting the machine to re�ll it. An interesting extension to
this would be to include optimisation of the range of items sold in the machine.
Another application area where perhaps scheduling of �ll up would require careful
managing is with ATM machines that are not attached to the bank premises. For
example, ATMs located in convenience stores. These would be sited in locations
where demand is high but taking into account high risk areas. We would imagine
that re�ll of ATMs is quite costly given the security requirements and than there
might be constraints on when the ATM could be re�lled.

A modi�cation to our problem would be that of bin relocating. Given that the
campus has bins already in place, we would investigate the problem of relocating
existing bins taking into account the cost of doing so. This would include as input
existing bins and seek to decrease inconvenience cost whilst minimising relocation
cost.

One of the challenges we faced when putting forward the initial project proposal
and discussing this with other project sponsors, is that of showing in the proposal
value to the client. In most cases, the situation being modeled is one that is already
up and running and so the case has to be put forward that the project is worthwhile
to undertake to see if an improvement can be made. Clearly, this has to be handled
carefully and tactfully. In situations there there are hundreds of thousands of dollars
of potential savings and where the project cost is a fraction of this, then the case for
the project is clearer. Another approach is that in situations where there is some
form of contract governing the activity, as there is in this case, where SERCO are
contracted to provide services to Melbourne University, then the model and results
might suggest some additions that could be made to the contract to ensure better
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6 Conclusion

service. Alternatively, from the other side, the work could provide indications of
where cost savings could be made whilst maintaining the same service levels.

In summary, the challenges we faced were: framing the initial proposal so that we
could show value to the client, gathering the data in sensible manner given the time
constraints and �nally developing a model that is tractable. Finally, whilst our
model did show an improvement in convenience cost of 33% we feel that the data
we captured, and based the model on, is not reliable enough to provide something
that is reasonable to present as a recommendation. As a minimum we should at
least frame the result in a con�dence interval before doing so.
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7 Appendix

As part of this project we developed a program to assist with the processing of
data into the model input parameters as well as the visualisation of results. This
program, called BinNetwork, uses the Xpress Application Developer library of the
FICO

TM

XPress Optimisation Suite. This library provides an API for creating and
managing user interface elements such as canvases and buttons as well as primitives
for drawing geometry onto canvases.
The �gure below shows the BinNetwork program user interface. The map backdrop

Figure 7.1: BinNetwork Showing Pickup Route

was obtained from OpenStreetMap1 and converted into a PNG �le and displayed
on the canvas. Lines, circles and text of various size and colours are drawn on top
of the backdrop to show network edges, vertices and labels of various sorts.
The right hand side panel controls the visibility on the map of various types of data.
The list panel at the bottom shows three types of information:

1http://www.openstreetmap.org/
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7 Appendix

• Tra�c Flow - The list will show tra�c �ow in both directions and for all time
periods along the edge closest to the mouse cursor. Moving the mouse to
another edge will cause the details to be shown for that edge.

• Rubbish Generation - The list will show rubbish generation for all time periods
for the node closest to the mouse cursor.

• Routes - The list will show the pickup routes from the optimiser at the times
the optimiser schedules pickups for. Clicking on the line will cause the route
to be displayed on the map.

Scroll bars on the right hand and bottom edge of the map canvas allow di�erent
parts of the map to be viewed. Maximising or otherwise enlarging the window will
also allow more of the map to be shown.
The BinNetwork program includes facilities for processing data for input into the
optimisation model:

• Reading edge tra�c data.

• Reading seating count data.

• Output to a DAT �le of rubbish generation for each node for each time period.

• Output to a DAT �le of shortest path distances between every node in the
network.

• Output to a DAT �le of service cost data for each edge for each time period.

• Display of rubbish generation for each node.

• Display of tra�c for each edge.

• Display of current bin locations.

• Display of car park and depot locations.

• Display of seating and food outlet locations.

It also includes facilities for reading results from the optimiser and displaying them:

• Input of pickup schedule routes.

• Display of full routes on the map.

• Display of new bin locations on the map.
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09:00 10:00 11:00 12:00 13:00 14:15 15:15 16:15 17:15 V p
i,max

People leaving with food - Place 1: Professor's Court Café
8 11 16 15 14 13 11 5 0 16

People leaving with food - Place 2: Pronto Pizza
5 35 10 35 55 45 20 10 0 55

People sitting - Place 1: Professor's Court Café
9 9 8 3 8 17 11 23 13 23

People sitting - Place 2: Union Lawn
2 11 13 34 40 21 14 11 11 40

People walking - Place 1: Node 56 to 59
25 66 68 90 63 40 60 53 29 90

People walking - Place 2: Node 1 to 117
190 120 145 200 205 220 195 200 115 220

People walking - Place 3: Node 124 to 42
30 75 180 85 340 115 85 75 20 340

People walking - Place 4: Node 42 to 124
15 115 25 290 40 60 65 105 40 290

Table 7.1: Whole day observations for pro�les

32


