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Electron Microscopy
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FIBSEM stack at 5 nm resolution. 

Courtesy of G. Knott



Synapses and Mitochondria

Wikipedia3

•Synapses transmit signals from neurons to other cells. 
•Mitochondria provide cells with the energy they need. 
•Their shape is affected by neuro-degenerative diseases.



Talk Outline

1. Segmentation given sufficient amounts or training data. 

2. Domain adaptation 

3. Active Learning
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Context-Based Features
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Synapse:

Non-Synapse:

Pre-synap*c	region	
• Axon	terminal	
• Many	vesicles

	

	

Post-synap*c	region	
• Dendrite	
• No	vesicles

Becker et al. TMI’13



Contextual Features

• Context features are based on image statistics inside a cubic neighborhood 
centered around a location relative to the voxel to be classified. 

• Many different channels are computed and AdaBoost selects the location, 
channel and cubic neighborhood size.

6

	 	 	

G
au
ss
ia
n	
sm

oo
th
in
g

G
ra
di
en

t	m
ag
ni
tu
de

La
pl
ac
ia
n	
of
	g
au
ss
ia
n

	

	

	



Synaptic vs Local Features
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3D Detection
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Quantitative Evaluation
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Membranes and  
Contextual Features

•Explicitly model membranes as separate regions and exploit the fact that 
the inside is enclosed within them to retain the graph cut formulation. 

•Use the contextual features to compute the unary terms.  

➡ Improved performance and faster training. 
10 Lucchi et al., MICCAI’14



Time and Accuracy
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3.21 µm × 3.21 µm × 1.08 µm: 53 mitochondria
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Context Features + CRF U-Net 3D

From Contextual Features to U-Net

Method Jaccard Index

Context F. + CRF 84.6%

U-Net 2D 82.4%

U-Net 3D 86.1%

Striatum Mitochondria



Is Resistance Futile?

13

Context Features 3D CRF U-Net 3D

Method Jaccard Index
Context Features 2D 66.8%

Context Features 3D 85.2%

U-Net 2D 73.5%

U-Net 3D 77.0%

vs

So, probably, but high-level knowledge 
still has its place.

.. but U-Net does not take orientation 
into account. 



A Closer Look at Mitochondria
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Hippocampus

Striatum



A Closer Look at Synapses
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Cerebellum

Somatosensory  
Cortex



Supervised Domain Adaptation
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Task 2 Task 1 Task 2 Task 1 Common to all tasks 

Standard  
Multi-Task Learning

Our  
Approach

Task 2 Task 1 Task 2 Task 1 Common to all tasks 



Our Approach
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Gradient Boosting
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Quantitative Evaluation
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Delineating Dendritic Trees …

Processing steps: 

1. Compute the tubularity of individual voxels. 

2. Select voxels that locally maximize this measure. 

3. Build a tubular graph by linking these voxels.  

4. Find an optimal tree within the graph.
20



… and Roads
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Image Tubularity Volume Graph Weighted Graph Reconstruction

—> The only difference between the two versions comes from the data 
used to train the path classifier! 



Path Classification
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Given annotations in a source stack: 
•Establish correspondences in the target stack, some correct, other not.  
•Formulate a multiple instance learning problem.
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Unsupervised Domain Adaptation



Multiple Instance Learning
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Relative contributions (weights) of candidate correspondence to the softmin 

�̂t = argmin�t

1

|Cs|
X

csi2Cs

softmin [`i1, `i2, . . . , `ik] ,

where

• `ij = L�

�
f�s(csi )� f�t(cti,j)

�

• �s and �t are model parameters, that is boosted tree thresholds.

• L� is the Huber loss

• softmin [`1, . . . , `k] = � 1
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Segmentation
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Mitochondria 

Synapses 

Subspace Alignment GT Ours 

Subspace Alignment GT Ours 

FP 

FP 

FN FN 



Active Learning

Active query 
selection 

query

fitted model

labeled sample
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Labeled 
dataset

L = {x1, ..., xnl}
Y = {y1, ..., ynl}

Learning 
model ✓

Unlabeled 
dataset

U = {x1, ..., xnu}



Obvious Strategies

… are not necessarily best. 
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Uncertainty Sampling
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Conventional uncertainty sampling:

labeled                     points

unlabeled points

positive
negative

Introducing geometry:

?
?

Potentially mislabeled points. Favoring smooth boundaries.



Geometry-Based Active Learning
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p✓(yj1 = ŷ)



Batch-Mode Active Learning

• Branch and Bound Search for an Optimal 
Slice. 

• Much easier task for the expert annotator.
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Batch-Mode Geometry-Based  
Active Learning

31

User User 
inputinput



EM Segmentation Results
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MRI Segmentation Results

33

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

# inputs from expert

di
ce

 s
co

re

 

 

all data
Rs
FUs
CUs
pFUs
pCUs



Delineation

Ambiguous cases: 
● Branch crossovers 
● Occluded paths 
● Linear structures that are not part of the ground truth 

 —> Annotator should focus on paths that violate the smoothness of probabilities 
along the branches.
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Probability Propagation
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○  

Uncertainty  
before propagation

Uncertainty  
after propagation



Density Query

36

○  



Algorithm’s behavior
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Decreasing ambiguity

Frequently queried pairs

15 samples 25 samples 35 samples 45 samples5 samples



Path Classification Results
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Roads Blood vessels Axons Neurons



Batch size
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○ Singletons – do not capture 
geometry 

○ Pairs – capture geometry 
a n d e n a b l e f r e q u e n t 
classifier update 

○ Triplets – classifier not 
updated frequently enough



Delineation Results
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Random Uncertainty Ours Ground truth



Conclusion

• Techniques that rely on Machine Learning are required but 
the training data is hard to obtain.  

• Both Domain Adaptation and Active Learning can help but 
the interfaces must be carefully designed.  

• We are going to have to learn how to learn. 
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• A human brain contains 
approximately 100 billion 
neurons and 100 trillion 
synapses. 
• It would take 1000 
Exaby t e s t o s t o r e an 
uncompressed digitization 
at 5nm resolution.
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