


Can I See Some Hands Please? 

 
 

 Who is familiar with 
 

 Semi-supervised learning? 
 Multiple instance learning? 
 Transfer learning / domain adaptation? 
 Active learning? 



Some Response Please…? 

 
 How many different classifiers are there 

around that optimize for classification error 
rate [or accuracy or 0-1 loss]? 

 

 < 3 
 = 3 
 = 4 
 > 4 



Construction or Sketch Please…? 

 
 

 Give me a classification problem 𝑝𝑝(𝑥𝑥,𝑦𝑦) and a 
classifier such that expected error rate grows 
with increasing number of training samples 

 
 Or accuracy in expectation drops with more 

samples… 
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Introduction 

 

 Supervised leaning methods among best 
performing algorithms in biomedical image 
analysis 

 

 No distinction here between ML, PR, statistical 
learning, etc. 

 

 Note : in some sense, there is always room for 
supervised learning… unless one neglects proper 
validation 



Introduction 

 
 

 Obtaining annotations, however, remains 
bottleneck in biomedical image analysis 

 

 “Standard” tasks may have been solved but… 
 

 We seek solutions to evermore complicated and 
specific problems 



Outline 

 Focus is on 
 Classification / labeling / segmentation 
 General concepts, methodologies, … 

 So yes, this applies to your deep net… 

 
 What can we do? 
 SSL, MIL, TL [or DA?], AL 
 Cover general ideas and some challenges 
 Discussion and conclusions 



Reduction of Annotator Burden 

 

 What can we do? 
 

 Crowdsource your way out! 
 Exploit unlabeled data 
 Handle coarse labels 
 Employ data already labeled 
 Human-in-the-loop 

 

 Obviously, not necessarily mutually exclusive 



Reduction of Annotator Burden 

 

 What can we do? 
 

 Crowdsource your way out!  This workshop? 
 Exploit unlabeled data : e.g. semi-supervision 
 Handle coarse labels : e.g. multiple instances 
 Employ data already labeled : e.g. transfer / DA 
 Human-in-the-loop : e.g. [inter]active learning 

 

 Obviously, not necessarily mutually exclusive 



Orange or Cyan? 



Semi-Supervised Learning 

 
 [Even] in biomedical domain unlabeled data is 

often abundant 
 

 Natural question : can we exploit these to 
improve our classifiers?  And if so, how? 
 With some labeled data at our disposal… 



Semi-Supervision, How To 

 
 

 Two somewhat distinct lines of thought 
 

 Make additional assumptions about problem 
 Use assumption intrinsic in choice of classifier 

[1,2,3,4,5] 



Additional Assumptions 

 

 Means to link 𝑃𝑃𝑋𝑋 and 𝑃𝑃𝑌𝑌|𝑋𝑋 
 𝑋𝑋 feature vector 
 𝑌𝑌 label 

 

 Smoothness assumption / local consistency 
 Cluster assumption / global consistency 
 Low-density separation 
 Somehow exploit prior beliefs… 

 
[1,2] 



Alternatively 

 

 
 Link 𝑃𝑃𝑋𝑋 and 𝑃𝑃𝑌𝑌|𝑋𝑋 using constraints intrinsic to 

the classifier, acknowledging that the choice 
of classifier may already provide the 
necessary assumptions 

[3,4,5] 



Third Option? 

 Self-learning and EM 
 Original idea can be traced back to 1930s 

 So natural, it gets reinvented every now and then 
[last case is from 2016] : “the PCA of SSL” 

 

 = self-training 
= self-taught learning 
= self-labeling 
= Yarowsky’s algorithm 
= pseudo-labeling 
= self-supervised learning 
= <your colleague’s method here?> 
= directly related to EM approach 



Self-Learning 

 

 Wrapper approach to exploit unlabeled data 
 

 Basic loop 
 Train on labeled examples 
 Classify initially unlabeled examples 
 Include in training set and retrain 

 
 Assumption underlying self-learning / EM? 



Self-Learning 

 
 All methods “in practical use” are variations on 

self-learning / EM 
 

 More generally, many a method has flavour of self-
learning or can be recast in such terms 

 
 E.g., transductive SVMs, entropy-regularized logistic 

regression, label propagation, co-training, etc. 



Some Theoretical Results in SSL 

 Abney, Ben-David, Cozman, Cohen, Lafferty, 
Wasserman, Singh, Zhu, and many others 
 

 Concerning performance : twofold message 
 

 Firstly, strong assumptions necessary to provide 
guarantees about classification performance 

 Secondly, not surprisingly, if assumption are wrong, 
one could be in trouble 

 N.B. self-learning and EM often do not work! 

[6,7,8,9,10] 



A Definition of Safety 

 One may wonder to what extent SSL can 
provide techniques that, in some sense, always 
improve over supervised approaches 
 [Never worse and sometimes better is also OK] 

 

 Such methods are often referred to as safe 
semi-supervised 

 

 If improvements can be guaranteed for every 
instantiation we refer to it as strictly safe 

[3,11,12] 



More Theoretical Results 

 

 Recently, strong results that provide 
guaranteed safety using intrinsic constraints 

 

 So-called contrastive pessimistic estimation for 
likelihood and projection estimators for least-
squares classifier [or least-squares SVM] 

 

 More general theory developed, which further 
clarifies limitations of strictly safe SSL 

[13,14,15] 



Some Core Challenges 

 

 To what extent is it at all possible to construct 
safe methods?  For which classifiers? 

 What kind of safety is practically acceptable?  
And can we construct methods that fulfil such 
safety requirements? 

 [Additional] assumptions that lead to safe 
semi-supervision? 
 At least, say, within certain application areas? 
 Additional assumption => cannot always work 



From
 C

oarse to Fine? 



From Coarse to Fine… 

 Coarse labeling much easier than detailed 
 

 Given coarse label, can we trace back its 
“cause” at finer resolution? 

 

 E.g. given MR images with and without diagnosis of 
particular brain disease, can we localize voxels in 
which the disease manifests itself? 

 

 Given X-rays with and without TB, can we segment 
regions with TB? 



Multiple Instance Learning 

 Represent an object by a collection or 
[multi-]set of feature vectors, i.e., by means of 
multiple instances 

 

 Sets or so-called bags [of instances] to 
represent every object, but still a single label 
per object 

 

 Vectors assumed to be in same feature space 
 Set sizes do not have to be equal 

[16,17,18] 



E.g. a B
ag w

ith Instances 



Graphically Speaking 



Original Goal is Twofold 

 MIL aims to classify new and previously 
unseen bags as accurate as possible 

 

 But also : MIL tries to discover a concept that 
determines the positive class 
 Concepts are instances uniquely identifying a class 

 
 First more easy than second goal 
 Latter is often not considered in MIL literature 
 But latter is needed to go from coarse to fine… 

[19,20] 



Graphically Speaking 
concept we look for? 



Most Promising MIL Approaches 

 
 MILES and variations 
 Describe a bag by means of similarities to instances 

 

 Dissimilarity-based approaches 
 Describe a bag by means of distances to other bags 

 

 Good for classification, not for coarse to fine 
 Both do not discover something like a concept 

[17,21,22] 



Some Core Challenges  

 Little known about relationship bag labels vs. 
instance labels : what assumptions are of use? 

 To what extent is it at all possible to go to 
more details?  What assumptions are 
necessary? 

 How stable is coarse-to-fine process and how 
can we stabilize it? 
 

 Overall, little is known at theoretical level… 

[20,23,24] 



Some More Core Challenges 

 

 Stronger methods needed that really can 
discover concepts or similarly 

 

 Promising techniques based on convolutional 
networks [e.g. Somol, Rosmalen, Bazzani, 
Bency, …] 

 

 They use clever design of CNN 
 Relations to CRFs, MRFs? 

[25,26,27] 



 Test on this?   

 Train on this?   



Transfer Learning 

 Same as / similar to domain adaptation… 
 

 Can we transfer knowledge from one domain 
to another? 

 

 More specifically, use labeled data from the one 
domain to build a classifier in the other? 

 

 Most studied setting : labeled data from source 
domain / unlabeled data from a target domain 

[28,29] 



Transfer and Train and Test 

 Would like to deal with… 
 

 Train and test from different sites 
 Train and test from different machines 
 Train and test from different protocols 
 Train and test from different modalities 
 Train and test from different organs 
 Train and test from different tasks even? 

 
 N.B. Can also be used to undo sampling bias! 



Core Challenges? 

 Order in chaos 
 Many methods, but often unclear what really is 

solved / what underlying assumptions are 

 How deviations from assumptions influence 
performance? 

 Safe?  Any guarantees of improvement of 
target classifier over, say, source classifier? 

 

 General insight in and understanding of many 
procedures is lacking! 

[30,31,32,33] 



Reweighting Source Data 

 One of the more well-studied TL / DA 
techniques 

 

 Especially applicable in learning under covariate 
shift : 𝑝𝑝𝑆𝑆(𝑥𝑥) ≠ 𝑝𝑝𝑇𝑇(𝑥𝑥) but 𝑝𝑝𝑆𝑆 𝑦𝑦 𝑥𝑥 = 𝑝𝑝𝑇𝑇(𝑦𝑦|𝑥𝑥).  

 

 Canonical example : 

[34,35,36] 







Reweighting Source Data 

 Especially applicable in learning under 
covariate shift, where 𝑝𝑝𝑆𝑆(𝑥𝑥) ≠ 𝑝𝑝𝑇𝑇(𝑥𝑥) but 
𝑝𝑝𝑆𝑆 𝑦𝑦 𝑥𝑥 = 𝑝𝑝𝑇𝑇(𝑦𝑦|𝑥𝑥) 

 

 In this case, reweighting is “justified” because 
source and target loss can be related through 
weighting 

�ℓ 𝑥𝑥,𝑦𝑦 𝜃𝜃 𝑝𝑝𝑇𝑇 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 = �ℓ 𝑥𝑥,𝑦𝑦 𝜃𝜃 𝑤𝑤(𝑥𝑥)𝑝𝑝𝑆𝑆 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 



Reweighting Source Data 

 Trick is to estimate importance weights 𝑤𝑤 
 

 Many ad hoc approaches exist 
 Key issue is to control additional variance 

introduced through [estimated] 𝑤𝑤 
 

 See Mohri, Cortes, Joachims, et al. 
 Related bounds and regularization terms derived 

[37,38] 

�ℓ 𝑥𝑥,𝑦𝑦 𝜃𝜃 𝑝𝑝𝑇𝑇 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 = �ℓ 𝑥𝑥,𝑦𝑦 𝜃𝜃 𝑤𝑤(𝑥𝑥)𝑝𝑝𝑆𝑆 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 



Main Challenges 

 Application of current theory limited, also 
because of computational issues 

 

 Like in SSL, safety is a concern 
 To what extent is it possible to construct safe 

methods?  For which classifiers? 
 What kind of safety is practically acceptable?  How 

to construct methods that fulfil such requirements? 
 

 Currently no way to properly evaluate system 
and to set [hyper-]parameters 



Active Learning 



First : Human[s] in the Loop 

 Instead of learning as static problem in which 
all data is gathered beforehand 
 …we can integrate gathering and learning 

 

 Now much more is possible [in principle] 
 

 But dynamics make getting to guarantees, bounds, 
and rules of thumb even more complicated 
 

 Even simplest setting very difficult to analyse 



Question in Active Learning 

 
 Given trained initial classifier 

 

 Say we want to improve its performance by 
adding one or more instances / feature vectors 

 

 Can do better than pick next sample[s] at 
random? 
 Can we do it in a systematic way? 

[39,40,41,42.43] 



Why Active Learning? 

 
 Like for many other human-in-the-loops 

 
 Suppress cost of annotation 
 Speed up learning 
 Keep amount of training data within bounds 
 Better data is often more useful than simply more 

data : quality over quantity 



Approaches to Active Learning? 

 Most solutions [if not all] rely on strong models 
or are heuristic in nature 

 

 Two basic techniques 
 Use uncertainty 

 Uncertainty sampling 
 Sample points about which classifier is unsure 

 

 Use disagreement 
 Query by committee 
 Build ensemble and choose points with least agreement 



Exploration vs. Exploitation  

 

 Exploitation : make “optimal” decision based 
on current data available 

 

 Exploration : decide to investigate 
“suboptimal” options in order to be more 
optimal in the long run 

 

 Well-known trade-off in reinforcement learning 
 [Most probably] crucial in active learning as well 



Other Active Learning Heuristics 

 
 

 Expected model change 
 Variance reduction / maximization of Fisher 

information 
 Compare labeled density with total density 
 Expected error reduction 



Some Core Challenges 

 General insight and understanding is lacking 
 How to really trade off exploration vs. exploitation? 

 Dealing with biased sample [transfer learning!] 
 No good procedures to evaluate method 
 No proper way to set hyper-parameters 

 

 Safety is again an issue 
 How useful is AL if it sometimes dramatically fails? 
 Guarantees for minimal performance? 
 What is acceptable in real applications? 

[41,44,45,46] 



The Obligatory Quote? 

 
 
 
 
 
 ”Practice two things  

in your dealings with disease :  
either help  
or do not harm the patient” 
− Hippocrates 



Overall Discussion & Conclusions 

 Many techniques developed, but yet few in 
practical [industrial, clinical, etc.] use 

 

 How come? 
 

 Unknown, unloved? 
 Like in much in PR, ML, CV, IP, and MedIA, most 

“applied” works are mere proofs of concept with 
weak validations 

 Little solid theory [experimental / empirical or 
mathematical] to go on 



Overall Discussion & Conclusions 

 Especially for AL and TL / DA, I would argue 
strongly for safety [of some sorts] 

 Need for methods / theories that 
 Provide “blind” guarantees / plug and play 
 Can perform proper validation 
 Reliably tune hyper-parameters 
 Do not rely on uncheckable assumptions…  

 

 But also good start : perform more extensive 
validations [or state less exorbitant claims] 

[48] 



Overall Discussion & Conclusions 

 Similar views and issues apply to 
 Human in the loop 
 Interactive learning / segmentation 
 Crowdsourcing 

 

 Safe to apply? How to validate and to tune? 
 Only now issues become even more complicated… 

 

 Me pessimistic? Absolutely not! 
 Life is great : plenty of interesting stuff to be done! 
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