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Discriminative Models

• Models conditional probability (target 
conditioned on data): p(y|x) 

• Examples: SVM, Random Forest & Neural 
Network, CRF

• Can’t sample, doesn’t model distribution, but 
it’s better for classification

• We optimize the conditional likelihood

• Generative: joint log-likelihood
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Generative Models

• Sample from p(x | θ)
– Capture the joint probability between data (x) and target (y): p(x,y)

– Can also model the probability of data (x) given target (y): p(x|y)

– Can generate data and targets or data given target

– Generate samples    y,x ~ p(y,x)   or   𝑦 ~ 𝑝(𝑦), 𝑥 ~ 𝑝(𝑥|𝑦)

–  Need a noise for sampling,    z ~ N(0,1), y,x ~ fθ (z)

• Examples:
– GMM, HMM, Naive Bayes classifier, Monte Carlo
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Discriminative vs. Generative Models

Generative models
• Can generate new data instances.

• Capture the joint probability p(x, y), or just p(x) if there are no 
labels.

• Pros:

– Good at unsupervised machine learning

– We get the underlying idea of what the class is built on

• Cons:

– Very computationally expensive
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Discriminative models

• Discriminate between different kinds of data instances.

• Capture the conditional probability p(y | x).

• Pros:

– Need less data

– Computationally cheaper

• Cons:

– Not useful for unsupervised learning

– Can be more difficult to interpret

photo from: https://medium.com/@jordi299/about-generative-and-discriminative-models-d8958b67ad32

https://medium.com/@jordi299/about-generative-and-discriminative-models-d8958b67ad32


Generative Models - Autoencoder

• No need to labels
– reconstruction loss

– cross-entropy for binary values

– Sum of squared errors for real values

• latent vector: low dimensional representation
– can be used for data compression

– latent representation used for clustering
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Generative Models - Autoencoder

• Variations
– Vanilla Autoencoder

• 3 layers network

– Multilayer Autoencoder

– Convolutional Autoencoder

– Denoising Autoencoder
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Generative Models - Variational Autoencoder

• Learn the distribution
– selective sampling

• Reparameterization
– Construct latent representation from mean, std
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Generative Models - Variational Autoencoder
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Generative Adversarial Networks
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photo from: 
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f&sa=D&ust=1574267641133000&usg=AFQjCNEDI0qiTo
DdW7vYU3ZAdihHTZ9pXQ

• Use Cases: generate realistic images, realistic text, ….



• Original Idea
– Adversarial learning
– Train two models (G and D) simultaneously
– Model G generates images from input noise
– Model D classifies images into real or fake / generated
– Model G tries to fool model D
– Model D acts as supervision on model G
– G stands for Generator and D for Discriminator

• GAN Lab: Watch GAN training, draw distribution:

–  https://poloclub.github.io/ganlab/

Generative Adversarial Networks
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Image credit: Thalles Silva

https://poloclub.github.io/ganlab/
https://medium.freecodecamp.org/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394


Generative Adversarial Networks

• Nash Equilibrium
• Match distribution

• Draw samples (x) from the data distribution (pdata) real images
• Draw samples from the model distribution (pg) based on a set of latent 

variables (z) drawn from a prior distribution (pz) generated images
•  Detect samples coming from the data distribution (e.g. real images)

Discriminator
• Goal: pg=pdata                 Nash equilibrium
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GAN Learning Algorithm
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GAN Loss

• Minimax (each player tries to minimize her maximum loss)
• Optimal solution is D(x) = D(G(z)) = 0.5 (ideal case)
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data distribution Discriminator input noise Generator

https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b



Advantages and Disadvantages

- Hard to train
- Hard to scale up to deep architectures
- No explicit representation of pg(x)

+ No need for sampler
+ No need for inference
+ Approximation of wide range of functions
+ Applicable to different vision tasks
+ Label-free training
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Hard to train

• Non-convergence

– the model parameters oscillate, destabilize and never converge,

• Mode collapse

– the generator collapses which produces limited varieties of samples,

• Diminished gradient

– the discriminator gets too successful that the generator gradient vanishes and learns 
nothing,

• Unbalance between the generator and discriminator causing overfitting

• Highly sensitive to the hyperparameter selections.
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Hard to train - Non-convergence

Nash equilibrium: one player will not change its action regardless of the 
opponent’s action
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https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-adv

isory-networks-819a86b3750b

https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b


Hard to train - Mode Collapse
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https://arxiv.org/pdf/1611.02163.pdf https://arxiv.org/pdf/1703.10717.pdf

https://arxiv.org/pdf/1611.02163.pdf
https://arxiv.org/pdf/1703.10717.pdf


Hard to train - Mode Collapse
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https://arxiv.org/pdf/1611.02163.pdf

Solution:
1. Train G only (i.e., not D) until grad mag is zero. Single mode independent of 

z:

2. Train D – very easy training, just detect this mode!

3. When training G again, it will search for next mode… wash, rinse and 

repeat.

https://arxiv.org/pdf/1611.02163.pdf


Hard to train

• Take your time for the tuning of hyperparameters
– it takes a lot of patience, but it pays off

• Balance between the training for generator and discriminator

• GAN loss measures how well discriminator is doing wrt generator and 
vice-versa 
– not an absolute measure, so loss can go up, and generated images can improve
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Regularization
• strong G: faster convergence to the optimal solution. Nevertheless, a bad initialization could lead to instability 

problems
• strong D: This examples shows the problem of vanishing gradients. It is clear that the generator cannot be 

learn properly due to the excessive strength of the discriminator. In this case, the training converges to a 
solution different from the optimal one

Slide 21

normal setting strong Generator strong Discriminator

https://github.com/emsansone/GAN

https://github.com/emsansone/GAN


GAN Performance

• Main difficulty of GANs: we don’t know how good they are

• People cherry pick results in papers -> some of them will always look good, 
but how to quantify?

• Do we only memorize or do we generalize?

• GANs are difficult to evaluate!
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GAN Performance

• Inception score (↑)
– Inception to measure image quality and diversity

• Saliency: check whether the generated images can be classified with high confidence 
(i.e., high scores only on a single class)

• Diversity: check whether we obtain samples from all classes

– Train an accurate classifier

– Train an image generation model (conditional)

– Check how accurate the classifier can recognize the generated images 

– Drawback: statistics of the real data are not compared with the statistics of the generated 
data
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Inception model

Barratt, Shane, and Rishi Sharma. "A note on the inception score." arXiv preprint arXiv:1801.01973 (2018).



GAN Performance

• FRÉCHET INCEPTION DISTANCE (↓)
– measure of similarity between two datasets of images

– correlates well with human judgement of visual quality

– Fréchet distance between two Gaussians fitted to feature representations of the Inception 
network

– Inception network to extract features (from both real and generated images). 

– Model the data distribution with a multivariate Gaussian with mean µ and cov Σ. 

Tr: Trace Function (sum of elements on the main diagonal of the input matrix)
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Heusel, Martin, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. "Gans trained by a two 
time-scale update rule converge to a local nash equilibrium." In NeurIPS 2017.



Applications (GAN)
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Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.



Applications (GAN)
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Brock, Andrew, Jeff Donahue, and Karen Simonyan. "Large scale gan training for high fidelity natural image synthesis." arXiv 
preprint arXiv:1809.11096 (2018).

● BigGAN (state-of-the-art in GANs)

● Large scale training

● Heavy architectures



Applications (cGAN)
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Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks.
" arXiv preprint arXiv:1611.07004 (2016).



Applications (cGAN)
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Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks.”, ICCV 2017.



Applications (segmentation to image)
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Park, Taesung, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. "Semantic image synthesis with spatially-adaptive 
normalization." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2337-2346. 2019.

Demo

http://nvidia-research-mingyuliu.com/gaugan


Applications (domain adaptation)

Slide 30

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation . Y. Choi, M. Choi, M. Kim, J. Woo 
Ha, S. Kim, and J. Choo. CVPR 2018.



Applications (domain adaptation)
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StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation . Y. Choi, M. Choi, M. Kim, J. Woo 
Ha, S. Kim, and J. Choo. CVPR 2018.



Applications (super-resolution)
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Ledig, Christian, et al. "Photo-realistic single image super-resolution using a generative adversarial network." arXiv preprint 
arXiv:1609.04802 (2016).

Implementation: https://github.com/junhocho/SRGAN

https://github.com/junhocho/SRGAN


Applications (text to image)
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Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B. and Lee, H., 2016. Generative adversarial text to image synthesis. 
arXiv preprint arXiv:1605.05396.

Vancouver

Implementation: https://github.com/zsdonghao/text-to-image

https://github.com/zsdonghao/text-to-image


Applications (scene graph to image)
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Johnson, J., Gupta, A. and Fei-Fei, L., 2018. Image generation from scene graphs. In CVPR (pp. 1219-1228).

● Box loss: penalizing the L1 difference between 
ground-truth and predicted boxes

● Pixel loss: penalizing the L1 difference between 
ground-truth generated images

● Image adversarial loss: encouraging generated 
image patches to appear realistic

● Object adversarial loss: encouraging each 
generated object to look realistic

● Auxiliary classifier loss: ensuring that each 
generated object can be classified by Dobj



Applications (scene graph to image)
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Johnson, J., Gupta, A. and Fei-Fei, L., 2018. Image generation from scene graphs. In CVPR (pp. 1219-1228).



Applications (animations)
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Chan C, Ginosar S, Zhou T, Efros AA. Everybody dance now. arXiv preprint arXiv:1808.07371. 2018 Aug 22.

https://www.youtube.com/watch?v=PCBTZh41Ris

Implementation: https://github.com/llSourcell/Everybody_Dance_Now

https://www.youtube.com/watch?v=PCBTZh41Ris
https://github.com/llSourcell/Everybody_Dance_Now


Advances in GANs

• Variations: Info-GAN1, cGAN2, 
Wasserstein-GAN3, f-GAN4, …

• Inference with GANs5

• Feature learning (bi-GAN)6

• GANs + VAEs7

• Hundreds more GAN-derivations
• Database of GAN models: 

https://github.com/hindupuravinash/the-gan
-zoo

Slide 37

1Chen, Xi, et al. "Infogan: Interpretable representation learning by information maximizing generative adversarial nets.”, NIPS, 2016.
2Mirza, Mehdi, and Simon Osindero. "Conditional generative adversarial nets.", arXiv, 2014
3Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein gan.", arXiv, 2017.
4Nowozin, Sebastian et al. “f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization.” NIPS, 2016.
5Dumoulin, Vincent, et al. "Adversarially learned inference.", ICML 2017.
6Donahue, Jeff, Philipp Krähenbühl, and Trevor Darrell. "Adversarial feature learning." ICLR, 2017
7Larsen, Anders Boesen Lindbo, et al. "Autoencoding beyond pixels using a learned similarity metric." arXiv, 2015. 



Advances in GANs

• We still don’t know exactly how they work!
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Hands-on Exercise

• Google Colab Exercise
– https://colab.research.google.com/drive/16PusNuycpfNRhm-NqsyIgp5rsb_dwAQQ

• Fill in the specified lines
– Generator architecture

– Discriminator architecture

– Generator loss function

– Discriminator  loss function
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https://colab.research.google.com/drive/16PusNuycpfNRhm-NqsyIgp5rsb_dwAQQ

