

Robust Human Body Shape and Pose Tracking

<u>Chun-Hao Huang¹</u> Edmond Boyer² Slobodan Ilic¹

¹ Technische Universität München

² INRIA Grenoble Rhône-Alpes

Marker-based motion capture (mocap.)

• Adventages:

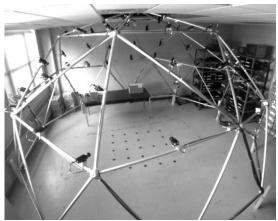
- precision, reliability
- little data (couple of kB/frame for 50 cameras, 5 people)
- real-time processing, visualization & retargeting.

Giant Studios (L.A. Noire set)

- Disadvantages:
 - Attaching, removing, re-attaching markers is tedious.
 - Markers can interfere with the movement.
 - Markers prevent the simultaneous acquisition of shape and motion.

Marker-less mocap.

- Multiple camera setup is usually required.
- Accquisition of both motion and shape.



3D dome (CMU)

Grimage (INRIA)

Motivation

 Methods that assume a skeleton usually produce skinning artifacts, require 2nd stage shape refinement.

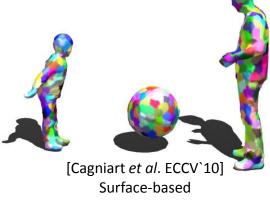
Degree of freedom (DoF): $N_{\rm I} \times 6 ~(< 10^2)$

 Purely-surface-based methods handle non-rigid surface deformation better, but do not provide the pose.

DoF: $N_{\rm P} \times 6 ~(\cong 10^3)$

AMP

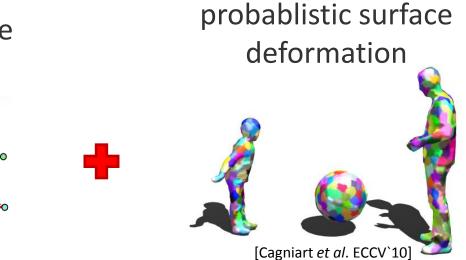
[Vlasic *et al*. ToG`08] Skeleton-based



Contribution

• bone differential coordinate

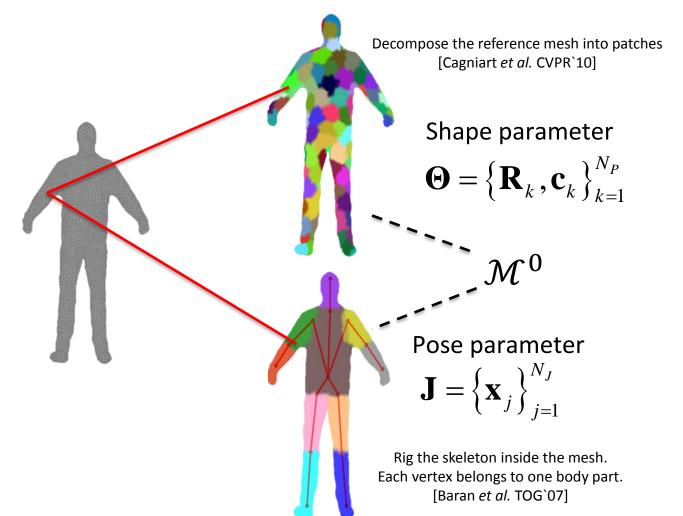
[Straka et al. ECCV`12]



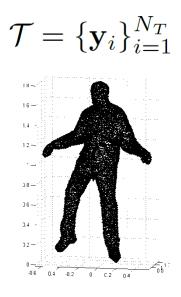
• A learning-based outlier rejection scheme.

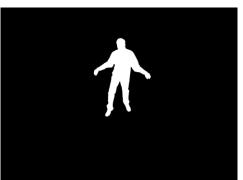
-β,

Preprocessing step: model



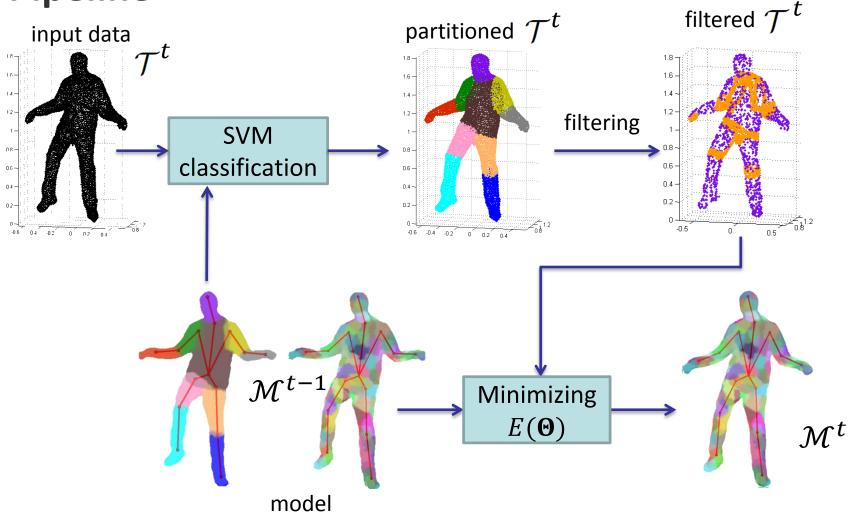
Preprocessing step: input data

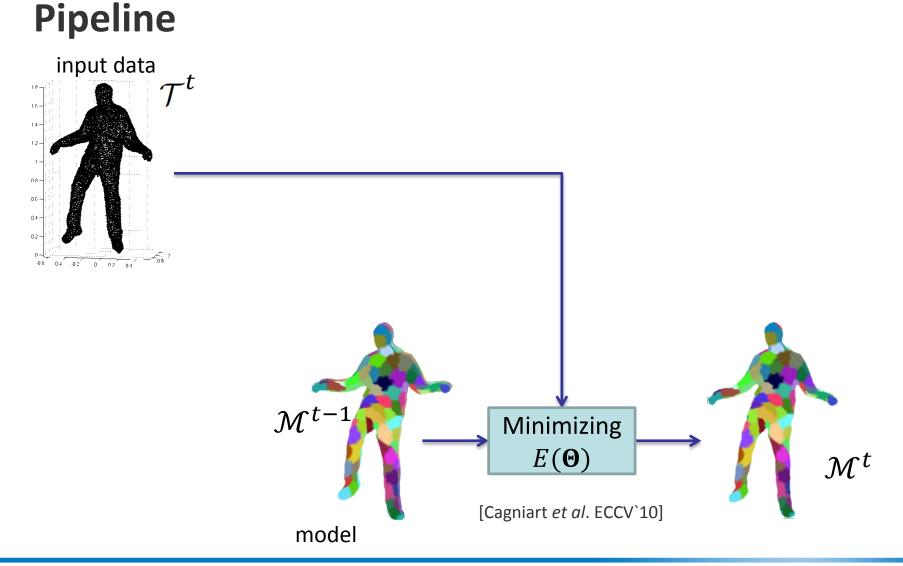




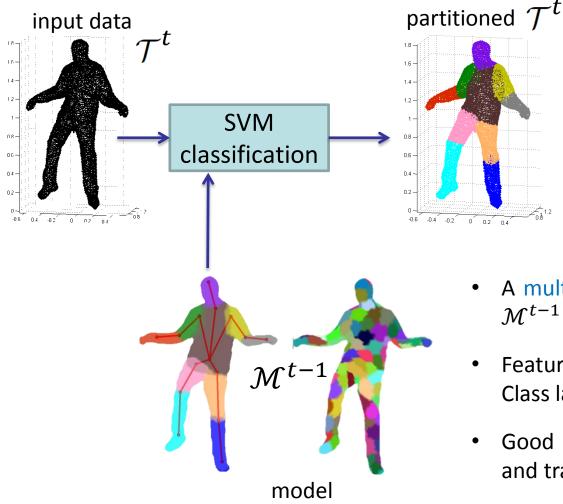
For each time stamp t, visual hull is reconstruced from silhouettes, which serves as our observations

Pipeline





SVM-based body part classification



- A multi-class linear SVM is trained on \mathcal{M}^{t-1} and tested on \mathcal{T}^{t}
- Feature: 3D coordinate of vertices. Class label: rigid body part label.
- Good compromise between accuracy and training time.

Filtering point cloud

• Bone \mathcal{T}_b :

patches on the bone often move rigidly together.

ightarrow sub-sample the observations.

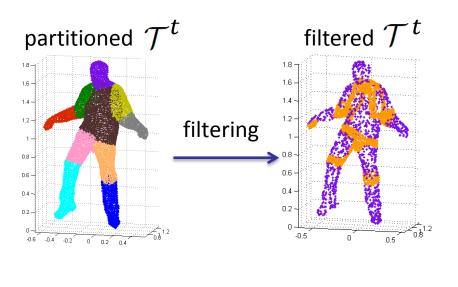
• Joint T_g :

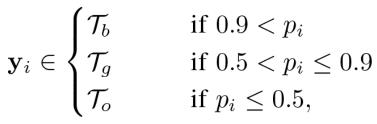
patches on the joint have nonrigid deformation.

ightarrow keep all the observations.

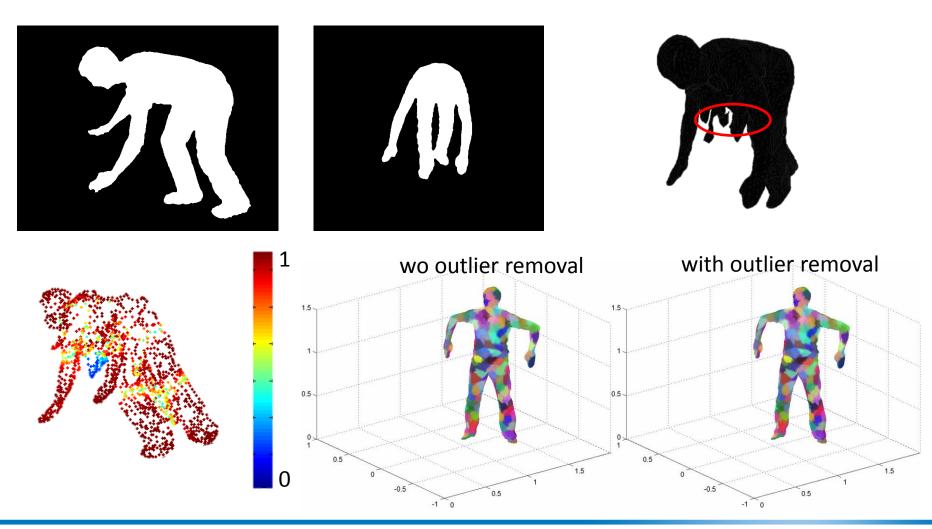
• Outlier T_o :

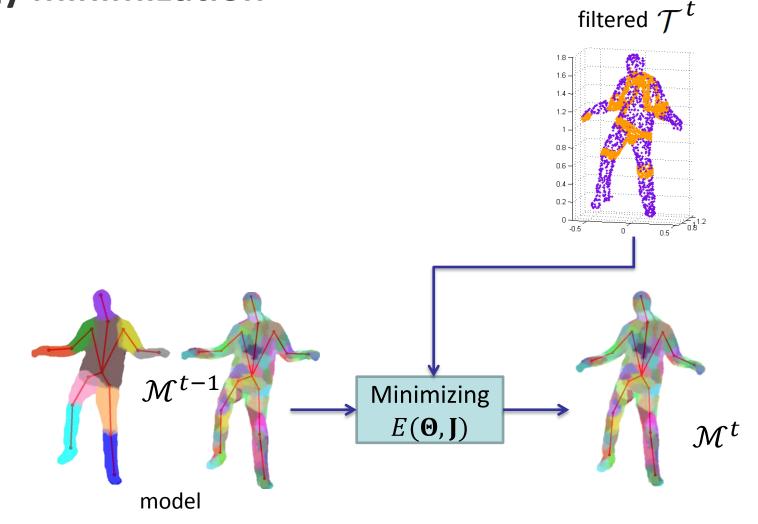
abandon all the observations.



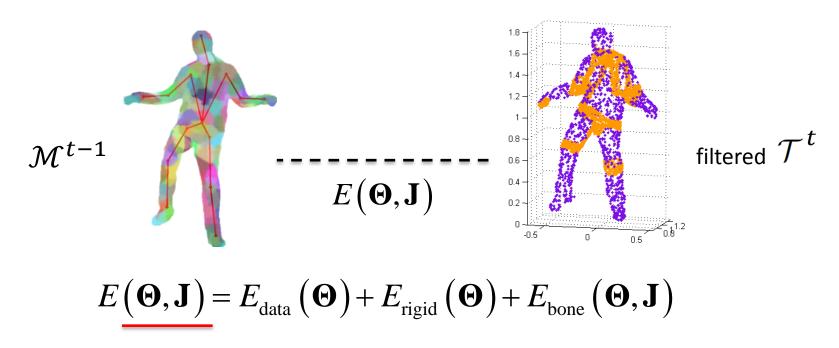


Benefit of SVM classification – outlier removal





Energy function



- $E_{data}(\Theta)$: how well the surface explains the observations.
- $E_{\text{rigid}}(\Theta)$: smooth the motion of neighboring patches.
- $E_{\text{bone}}(\Theta, \mathbf{J})$: keep the relationship between the mesh and the skeleton.

Data term

- $E_{\text{data}}(\Theta)$: how well the surface explains the observations.
- A probablisitic Iterative Closest Point (ICP) approach.
- Each observation has a soft assignment to every patch, updated in each iteration.
- Let observation *i* correspond to vertex v_i^k in P_k with a soft assignment w_i^k .

$$E_{\text{data}}\left(\boldsymbol{\Theta}\right) = \sum_{i=1}^{N_T} \sum_{k=1}^{N_P+1} w_i^k \left\| \mathbf{y}_i - \mathbf{x}_{v_i^k} \right\|^2$$

 $P(z_i|y_i, \Theta)$

 $N_{p} + 1$

 N_T

A probablistic point of view [Cagniart et al. ECCV`10]

- Can be interpreted as EM algorithm.
- The likelihood: Gaussian mixture model

$$P(\mathbf{y}_i \mid \mathbf{\Theta}) = \sum_{k=1}^{N_P+1} \prod_k \underline{P(\mathbf{y}_i \mid z_i = k, \mathbf{\Theta})}$$

• E-step: update the soft assignment.

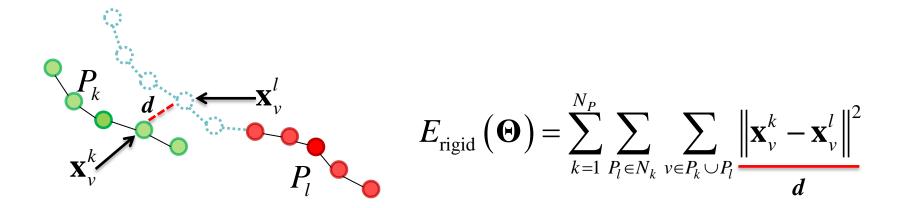
$$\underline{P(z_i = k \mid \mathbf{y}_i, \mathbf{\Theta})} = \frac{\prod_k P(\mathbf{y}_i \mid z_i = k, \mathbf{\Theta})}{\sum_{l=1}^{N_p+1} P(\mathbf{y}_i \mid z_i = l, \mathbf{\Theta})} - \ln(\cdot$$

• M-step: minimize sum of negative log likelihood (energy).

$$E_{\text{data}}\left(\boldsymbol{\Theta}\right) = \sum_{i=1}^{N_T} \sum_{k=1}^{N_T+1} w_i^k \left\| \mathbf{y}_i - \mathbf{x}_{v_i^k} \right\|^2$$

Rigidity energy [Cagniart *et al.* CVPR`10]

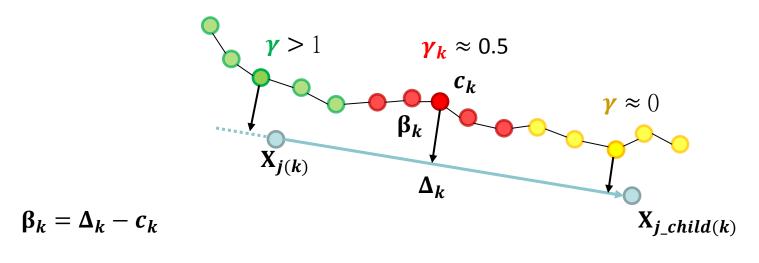
• $E_{\text{rigid}}(\Theta)$: smooth the motion of neighboring patches



For each patch, the real location and the predicted location should be consistent. $oldsymbol{\Theta}$ is implicitly encoded in $\mathbf{X}^k_{\mathcal{V}}$ and $\mathbf{X}^l_{\mathcal{V}}$

Bone-binding energy

• β coordinate : A relative displacement from patch to bone

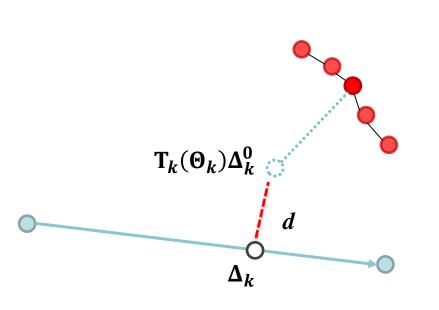


$$\Delta_k = \gamma_k X_{j(k)} + (1 - \gamma_k) X_{j_child(k)}$$

 γ_k is computed such that β_k is perpendicular to the bone.

Bone-binding energy

• $E_{\text{bone}}(\Theta, \mathbf{J})$: keep $\boldsymbol{\beta}$ consistent after transformation.



$$E_{\text{bone}}\left(\mathbf{\Theta}, \mathbf{J}\right) = \sum_{k=1}^{N_P} w_k \left\| \mathbf{\beta}_k - T_k\left(\mathbf{\Theta}_k\right) \mathbf{\beta}_k^0 \right\|^2$$
$$= \sum_{k=1}^{N_P} w_k \left\| \mathbf{\Delta}_k - T_k\left(\mathbf{\Theta}_k\right) \mathbf{\Delta}_k^0 \right\|^2$$
$$d$$

For each patch, Δ_k predicted from the patch and Δ_k from the bone should be consistent.

 w_k is weighed according to γ_k

Energy function

• $E_{data}(\Theta)$: how well the surface explains the observations.

$$E_{\text{data}}\left(\boldsymbol{\Theta}\right) = \sum_{i=1}^{N_T} \sum_{k=1}^{N_P+1} w_i^k \left\| \mathbf{y}_i - \mathbf{x}_v^k \right\|^2$$

• $E_{\text{rigid}}(\Theta)$: smooth the motion of neighboring patches.

$$E_{\text{rigid}}\left(\boldsymbol{\Theta}\right) = \sum_{k=1}^{N_P} \sum_{P_l \in N_k} \sum_{v \in P_k \cup P_l} \left\| \mathbf{x}_v^k - \mathbf{x}_v^l \right\|^2$$

• $E_{\text{bone}}(\Theta, \mathbf{J})$: keep the relationship between mesh

regularization terms or deformation prior

$$E_{\text{bone}}\left(\boldsymbol{\Theta}, \mathbf{J}\right) = \sum_{k=1}^{N_{P}} w_{k} \left\| \boldsymbol{\Delta}_{k} - T_{k} \left(\boldsymbol{\Theta}_{k}\right) \boldsymbol{\Delta}_{k}^{0} \right\|^{2}$$

Minimizing the energy

$$E(\mathbf{\Theta}, \mathbf{J}) = \lambda_{\mathrm{d}} E_{\mathrm{data}}(\mathbf{\Theta}) + \lambda_{\mathrm{r}} E_{\mathrm{rigid}}(\mathbf{\Theta}) + \lambda_{\mathrm{b}} E_{\mathrm{bone}}(\mathbf{\Theta}, \mathbf{J})$$

•
$$\lambda_d = 10$$
, $\lambda_r = 1$, and $\lambda_b = 1$

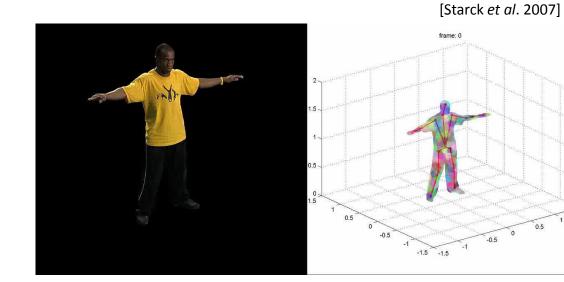
- Each term is quadratic in terms of variables.
- Standard Gauss-Newton optimization is thus feasible.
- 3 4s per frame (including SVM training time).

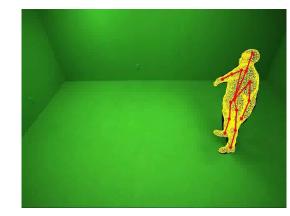
Quantitative results

- Pose: 70.86mm error in Walking sequence from HumanEvall benchmark. (error < 80mm typically corresponds to a correct pose [Sigal et al. IJCV`12]).
- **Shape**: reprojection error (%)

Sequence	our	surface-based [4]	inverse kinematic
Handstand 1 [1]	15.53	20.13	23.04
Wheel [1]	10.28	10.30	14.35
Skirt [1]	11.94	12.55	21.43
Dance [1]	9.95	9.90	15.01
Crane [2]	10.79	11.20	16.33
Handstand 2 [2]	12.84	13.97	15.16
Bouncing [2]	9.87	9.95	14.64
<i>Free</i> [3]	14.12	14.69	-

Qualitative results





[Vlasic *et al*. 2008]

[Gall et al. 2009]

0.5

-0.5

Conclusion and future work

- A method that jointly recovers the pose and the shape of human body has been proposed.
- We introduce a novel SVM-based classification scheme that filters target point clouds and thus helps better correspondence search.
- Future directions include alleviating the requirement of background substraction, and exploiting more photometric information.
- More experiment results in the poster session.

Thank you!

Questions?