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Overview 



Segmentation using multi-atlas fusion 
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Heckemann et al., Neuroimage 2006 
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Problems: 
•  Number of atlases is typically limited 
•  Changing population characteristics or disease may 

necessitate new atlases 

Segmentation using multi-atlas fusion 



Problems: 
•  Number of atlases is typically limited 
•  Changing population characteristics or disease may 

necessitate new atlases 
Solutions: 
•  Can we bootstrap or learn atlases from the population 

directly? 
•  Use manifold learning to model characteristics of a 

population of images 

Segmentation using multi-atlas fusion 



•  Space of brain MR images is typically very high-dimensional 
(D > 106) 

•  The natural variation of images may be described in a space 
with much lower dimension d 

•  Manifold learning aims at establishing this low-dimensional 
space 

Population modelling 

•  N input	  images	  are	  represented	  by	  
intensity	  vectors	  

•  Manifold	  coordinates	  are	  of	  
dimension	  d 



How to measure similarities 

•  A similarity measure can be defined based on the 
application: 

•  A weighted measure combining shape and appearance 
captures both aspects 

•  Similarities Sij can be transformed to distances Dij and vice-
versa 

Shape-‐based	  measures	   Appearance-‐based	  measures	  

•  Distances	  extracted	  from	  the	  
deforma9on	  

•  Deforma9on	  magnitude	  
•  Jacobian	  determinant	  
•  Other	  measures	  extracted	  

from	  the	  deforma9on	  field	  

•  Similari9es	  extracted	  from	  
image	  intensi9es	  

•  Sums	  of	  squared	  differences	  
(SSD)	  

•  Cross-‐correla9on	  
•  Mutual	  informa9on	  



•  Applica9on	  to	  neonatal	  data	  
•  Mul9ple	  tailored	  measures	  

–  Shape	  and	  MR	  appearance	  	  

How to measure similarities 

Aljabar et al, MICCAI 2010 



Aljabar et al, MICCAI 2010 

Linking to infant data 



LEAP 

•  LEAP aims at segmenting diverse image 
datasets by Learning Embeddings for Atlas 
Propagation 

•  Learns new representation for all images 
•  Neighbourhoods are defined by image 

similarities 
•  Initial small set of atlases is propagated 

throughout the data 
•  Atlases are propagated to ‘nearby’ images 
•  Labelled images are used as bootstrapped 

atlases thereafter 

Wolz et al NeuroImage 2010a 



Intensity-based similarities 

•  Here, we use intensity differences estimated in 
a template space 

•  All N images are registered to the MNI152-
template  

•  The level of registration can be adapted to the 
size of the structure of interest 

•  Pair-wise similarities can be estimated over the 
whole brain or in a region of interest 



LEAP propagation 

•  Distances in the learned manifold are used 
to identify atlas propagation steps 

•  The N unlabelled images that are closest to 
the set of labelled images are selected for 
segmentation 

•  For each selected images, the M closest 
labelled images are selected as atlases  

•  All selected atlas images are accurately 
registered to a target image 



LEAP propagation (2) 

•  A spatial prior is generated from multiple 
atlases 

•  An intensity model is estimated from the target 
image 

•  The target segmentation is estimated based 
on both models 



Application to the segmentation of ADNI 

Available set of atlases: 
•  30 atlases from young, healthy subjects 
•  Manually delineated into 83 structures of 

interest 

ADNI dataset: 
•  838 images from elderly subjects with 

dementia and age-matched healthy 
controls 

•  Strong pathology due to ageing and 
disease progression 

 



Hippocampal segmentation 
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Manifold learning for multi-atlas 
segmentation: Results 

Wolz et al NeuroImage 2010a 



Manifold Learning: classification 

•  Manifold coordinates can be directly used to extract 
information 

•  Assuming, a clinical label is available for a subset of 
images, manifold coordinates can be used to classify the 
unlabelled subjects 

2D-embedding 



Embedding of baseline images 

•  2D	  embedding	  of	  baseline	  images	  
•  principal	  axis	  resembles	  disease	  progression	  



•  Single manifold is learned from subjects at two timepoints 
•  Subjects “move” along principal axis 
•  More atrophied subjects move “faster” 
 

Wolz et al, MICCAI MLMI 2010 

Combined embedding 



•  Image similarities are based on difference images between 
baseline and follow-up scans 

•  Features can be combined with embedding of baseline 
scans 

Embedding of intra-subject variation 

Wolz et al, MICCAI MLMI 2010 



k-nn neighbourhood graph 

Full similarity matrix k-nn similarity matrix 

[1] Belkin and Niyogi, 2003, Neur. Comp. 

wij 

•  All images are represented in a k-nn 
graph 

•  Every subject is connected to it’s n 
closest neighbours 

•  Edge weights wij are defined by 
image similarities and form a weight 
matrix W 

•  Subjects that are similar in input 
space are close in manifold space 
with the objective function  

•  Defining the graph Laplacian from 
the weight matrix W allows a closed 
form solution [1] 

 
 

Laplacian Eigenmaps 
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representing 
metadata 

Extended similarity graph 

•  Laplacian eigenmaps only considers image similarities 
•  Subject metadata (e.g. age, genotype) gives additional 

information to compare subjects 
•  An extension of the similarity graph by additional nodes 

allows to consider such information  

     



•  Subjects with similar metadata 
values are clustered in 
embedding space 

•  γ defines the influence of 
metadata on the final embedding 

     

Extended objective function 

•  In the extended similarity graph, M additional nodes 
represent M groups of metadata 

•  Weights         can be defined discrete or continuously 
•  An extended objective function can be defined 

     



Image similarities only High weight of meta-data Combination 

Illustrative example 

•  Every node has some meta-information with a value 
between 0 and 1 

•  Three additional nodes are introduced in the similarity 
graph and weights to every image are defined by the 
metadata 

•  Changing the influence of the meta-information leads to 
different embedding results 



N (F) MMSE Aβ-42  ε2/ε4 carriers Hippo. Vol. 

CN 116 (56) 29.1+/-1.0 202+/-58 16/28 4.53+/-0.55 

S-MCI 112 (36) 27.2+/-1.8 179+/-62 9/49 4.26+/-0.59 

P-MCI 89 (33) 26.6+/-1.8 146+/-46 1/52 3.93+/-0.65 

AD 83 (44) 23.6+/-1.9 148+/-46 4/63 3.92+/-0.73 

•  ADNI baseline images were used for evaluation of the 
method 

•  Used non-imaging metadata: 
•  CSF concentration of beta amyloid Aβ-42 (continuous) 
•  APOE-genotype (discrete) 

•  Derived imaging metadata: 
•  Hippocampal volume (continuous) 

•  The 420 subjects for which the CSF biomarker was 
available were used: 

Image data and meta-information 



Composite similarity measure 

•  Pairwise image similarities are based on a combined 
similarity measure incorporating deformation energy and 
intensity differences 

•  Deformation energy is based on the deformation 
magnitude resulting from registering two images 

•  Sums of squared intensity differences are used to 
represent the residual difference 



Parameter setting 

•  Using a 5-10 
dimensional 
manifold leads to 
stable 
classification 
results 

•  The weighting factor    defines the influence of image 
similarities and metadata  

•  Classification results on a training data set show a good 
performance of the similarity-based measure 



Classification accuracy using manifold learning 

AD vs CN P-MCI vs S-MCI P-MCI vs CN 

Laplacian Eigenmaps  86% 63% 82% 

& ApoE 83% 69% 81% 

& Aβ-42 87% 68% 84% 

& Hippo. Vol. 86% 66% 83% 

& Aβ-42 / Hippo. Vol. 88% 67% 87% 

& Aβ-42 / Hippo. Vol. / ApoE 88% 69% 87% 

•  Manifold coordinates are corrected for age  
•  1,000 leave-25%-out runs are performed to obtain 

classification rates 

Classification results 



Conclusions 

•  Manifold learning allows to model the characteristics of a 
large population of brain images  

•  In LEAP, the defined metric space is used to propagate a 
set of manually labelled atlas images in several steps 
through the whole manifold 

•  An improved segmentation and classification accuracy 
shows the benefit of the manifold-based approach 

•  Manifold coordinates can be directly used to infer from 
subjects with a clinical label to unlabelled subjects 

•  An approach to incorporate metadata into Laplacian 
eigenmaps was described 

 


