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Spinal deformities

• Adolescent Idiopathic Scoliosis (AIS):
 Complex and progressive 3D deformation of 

the musculoskeletal trunk
 Radiographic imaging is the most frequently 

used modality to evaluate the pathology
 Volumetric imaging modalities remains 

limited (radiation dosage, posture)

• Surgical correction
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Fluoro image  
guidance

Percutaneous vertebroplasties (nerves, vertebral articulations)

Trajectory planning 

CBCT acquisition
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Interventional X-ray & CBCT



1Kadoury et al. Medical Image Analysis (2011)

• Interventional operating room
– Fusion of pre-operative biplane model with CBCT images based on 

articulated deformation using MRFs.
– Real-time inference of annotated geometrical spine model to tracked 

fluoroscopic intra-operative data.

Image-guided spinal surgery
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• High variability of the spine’s 
natural curvature and complex 
nonlinear structure. 

• Use of linear statistics (PCA) are 
inapplicable to model such 
articulated structures for diagnostic 
or intra-operative imaging 
purposes.

 To overcome these challenges, an 
alternative approach maps the high-
dimensional observation data                   
(3D spine population) that are 
presumed to lie on a nonlinear 
manifold.

Variability in spine                             
deformation
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2J. Boisvert, et al. Geometric variability of the
scoliotic spine using statistics on articulated shape
models. IEEE TMI (2008).



Outline
• Background on Locally Linear Embedding (LLE)

– Data representation
– Neighbourhood selection
– Creating the manifold embedding

• Pre-operative reconstruction of an articulated 3D spine
– Model initialization  
– Regression functions for inverse mapping

• Pathology classification from the low-dimensional manifold

• Inference of the intra-operative  spine geometry from CT
– Manifold-based constraints ensuring geometrical consistency
– Optimization of manifold parameters for direct model 

representation
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3S. Roweis and L. Saul. Nonlinear 
Dimensionality Reduction by Locally Linear 
Embedding. Science 22 December 2000: pp. 
2323-2326 

• Nonlinear dimensionality reduction technique proposed by S. Roweis and L. Saul 
(Science, 2000) for exploratory data analysis and visualization3.

• Analyze large amounts of multivariate data in order to discover a compact 
representation of the high-dimensional data.

• Unsupervised learning algorithm that computes low-dimensional, 
neighborhood-preserving embeddings of high-dimensional inputs.

• LLE is able to learn the global structure of nonlinear manifolds, revealing the 
underlying distribution of the data which can be used for statistical modeling.

Locally Linear Embedding
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• Data consisting of N real-valued 
observation vectors Xi , each of high 
dimensionality D, sampled from some 
underlying manifold.

• Each data point and its neighbors 
assumed to lie on or close to a locally 
linear patch of the manifold.

• In it’s simplest form, LLE identifies the K
nearest neighbors per data point, as 
measured by Euclidean distance.

• Local geometry of these patches by 
linear coefficients that reconstruct each 
data point from its neighbors. 
Reconstruction errors are measured by 
the cost function:

Locally Linear Embedding
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• Each high-dimensional observation Xi is 
mapped to a low-dimensional vector Yi 
representing global internal coordinates on the 
manifold. This is done by choosing d-
dimensional coordinates Yi to minimize the 
embedding cost function:

• Reconstruction weights Wij reflect intrinsic 
geometric properties of the data that are 
invariant to the linear mapping —consisting of 
a translation, rotation, and rescaling.

• The same weights Wij that reconstruct the ith

data point in D dimensions should also 
reconstruct its embedded manifold  
coordinates in d dimensions.

Locally Linear Embedding
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• Neighborhood size K:
– Stability of the resulting embeddings determined from                                                           

the increase in the number of significant weights W(K)                                                   

[Kouropteva et al., 2003].

– K is large enough to capture most local contexts and the                                                                       
resulting embedding space is relatively stable using                                                                    
the increase in significant weights I(K):

Parameter selection
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O. Kouropteva et al. Classification of Handwritten 
digits using supervised locally linear embedding 
algorithm and support vector machine. Symp. on 
Artif. Neural Networks, pp. 229-234, 2003.



• Intrinsic dimensionality d:
– Lowest residual variance ρ defined by the distance                                                                           

between pairs of data points can be used for                                                                                 
this purpose [Ridder et al., 2002]. 

– ρ = 1 - r2
DxDy , where r2

DxDy is the standard linear                                                              
correlation coefficient taken over all entries of DX                                                                                                               

and DY. DX and DY represent matrices of the                                                                                             
Euclidean distances between pairs of points in X
(input points in D-space) and Y (output points                                                                       
computed by LLE in d-space)

• Limited reliability of the number of                                                                               
eigenvalues that are appreciable in                                                                                
magnitude to the  smallest nonzero                                                                               
eigenvalue of the cost matrix. 

Parameter selection
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Application to face recognition
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Analytical representation of the manifold of 
high-dimensional data  by learning the 
common information from high-density data to 
estimate unseen points in the manifold.

J. Wang, et al. “An Analytical Mapping for LLE and Its 
Application in Multi-Pose Face Synthesis”, 14th BMVC., 2003.

Images of faces mapped into the embedding 
space (d=2) demonstrating the variability in 
pose and expression.

L. Saul and S. Roweis, “Think globally, fit locally:

unsupervised learning of non-linear manifolds”, TR

MS CIS-02-18, U. Penn, 2002.
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Pre-operative 3D reconstruction
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• Personalized 3D reconstruction of the pathological spine from 
diagnostic biplanar X-ray images Kadoury et al., IEEE TMI (28), 2009.



Statistical modeling of the spine
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• Dimensionality reduction of the extracted spinal curve in the 
low-dimensional manifold embedding.

• Generates an approximate                                                                
model from the closest                                                                           
neighbors in a 3D database                                                                                                  
containing 732 scoliotic
models.

• Manifold establishes the                                                                     
patterns of legal variations                                                                     
of spine shape changes in a                                                                           
low-dimensional sub-space.

• Use of an analytical support                                                                  
vector regression model to                                                                          
accomplish the inverse                                                                         
mapping of a new manifold                                                                  
data point onto the high-
dimensional  space.

LLE subspace map from closest 
neigbors of 3D curve

3D spinal curve Initial spine model 
(6 points/vertebra)

3D database

“Locally Linear Embedding”



Given N spine models expressed by the B-splines C(u)i, C(u)i  RD, i[1,

N], each of dimensionality D, it provides N points Yi, Yi  Rd, i[1, N]

where d<<D. The algorithm has four sequential steps:

• Step 1. Select the K closest neighbors for each point using the Frechet
distance.

• Step 2. Solve the manifold reconstruction weights:

where C(u)i is a data vector and ε(W) sums the squared distances
between all data points and their corresponding reconstructed points.

• Step 3. Map each high-dimensional C(u)i to a low-dimensional Yi,
representing the global internal coordinates using a cost function which
minimizes the reconstruction error :

• Step 4. Apply an analytical method based on nonlinear regression to
perform the inverse mapping from the d embedding :

xi = fi(Y) = Σjαijk(Y,Yi) + b is a SVR regression model using a RBF kernel
Xnew = (s1, s2,…, s17), where si is a vertebra model defined by si = (p1, p2,...,

p6), and pi = (xi, yi, zi) is a 3D vertebral landmark
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Biplanar reconstruction results
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representation
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• Classification of 170 pre-
operative patients with main 
thoracic deformities using a 
non-linear manifold embedding

• Extracted sub-groups from the 
underlying manifold structure 
using an unsupervised 
clustering approach

• Understand the inherent 
distribution and determine 
classes of pathologies which 
appear from the low-
dimensional space

Manifold-based 
classification

19

Manifold embedding of prior models

Clustering of low-
dimensional points
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Manifold embedding of prior models

Clustering of low-dimensional points

Clustered sub-groups from the manifold

Kadoury et al., Classification of three-dimensional thoracic deformities in adolescent 
idiopathic scoliosis from a multivariate analysis.                                                                           
Eur. Spine J., 2011
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Clustered sub-groups from the manifold
C1 cluster center

C3 cluster center C4 cluster center

C2 cluster center

Kadoury et al., Classification of three-dimensional thoracic deformities in adolescent 
idiopathic scoliosis from a multivariate analysis.                                                                           
Eur. Spine J., 2011

Parameter
Cluster I 

(n = 37)

Cluster II 

(n = 55)

Cluster III 

(n = 21)

Cluster IV 

(n = 57)

Coronal Main 

Thoracic (MT) 

Cobb angle (º)

53 ± 11 39 ± 9 45 ± 14 45 ± 9

Kyphosis (º) 31 ± 15 26 ± 12 19 ± 12 39 ± 12

Lordosis (º) -39 ± 12 -32 ± 15 -38 ± 12 -33 ± 12

MT plane of 

maximum 

curvature 

(PMC) rotation 

(º)

61 ± 30 71 ± 31 45 ± 24 53 ± 25

MT apical axial  

rotation (º)
-23 ± 11 -11 ± 8 -16 ± 8 -22 ± 8
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Workflow for articulated 3D spine inference

• The pre-operative 3D spine model is inferred to procedural CT data 
acquired for corrective spine surgery

• The articulated spine model is optimized through a Markov Random Field 
(MRF) graph in order to achieve multi-modal registration.

• We propose an approach which avoids CT image segmentation, is 
computational efficient and solves the standing to lying pose deformation.

Multiresolution label search

Optimality criterions

Image data 
term

Prior 
smoothness 
term

23



• The spine model S = [s1,…, sL ] consists of an                                                      
interconnection of L vertebrae si composed of:
 The 3D landmarks si are used to rigidly register                                                                                                 

each vertebra to its upper neighbour.

 Triangular meshes with vertices {vi
j | j = 1,…,V}, where                                                                                

the jth vertex corresponds to approximately the same location for every shape i.

• The ADM is represented by a vector of local                                                         
inter-vertebral rigid transformations modeled                                                                   
by T = {R, t} such that:

• To perform global anatomical modeling of the spine,                                                   
we convert A to an absolute vector of transformations:

 NTTTTTT  21211 ,,,absA

 NTTTA ,,, 21 
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si

Articulated deformable model (ADM) 
representation



• A successful inference between S0 controlled by the articulations (Aabs) 
and the image I must be accomplished by establishing similarity criterions 
which will drive the model deformation towards the optimal solution. 

• Objective: determine optimal displacement vectors                               
applied to the articulation T that give a good compromise between the 
encoded prior constraints established by manifold statistics and the 
fidelity to the image information:

• In turn, the energy function E can be decomposed into three costs related 
to the displacement vectors                             in the transformation space :

Transformation inference from higher order 
MRFs
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• A data-related term V ( A0
abs + D, I ) expressing the image cost and a local 

prior term V ( N, D ) measuring deformation between neighboring 
vertebrae are integrated in E:

Singleton and pairwise potential terms
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• Most energy minimization based methods for solving computer vision 
problems assume the energy can be represented in terms of unary and 
pairwise potentials.

Higher order clique potentials

Higher order clique variables encoded as 
projected distances to manifold space: 
 Capability to model complex  interactions of 
random  variables.

Spine model decomposed 
into three regional cliques

27



• Potentials are parameterized with clique variables Tc taking on 
corresponding costs θq if the cliques are assigned to the 
displacement vectors dc :

• Costs θq are manifold-defined geodesic distances evaluating the 
projection of clique variable to the prior distribution M:
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• Anatomical landmark deviations from “bronze-standard” are compared with 
pairwise cost functions.

• Evaluation on 20 patients with low to moderate deformations.

Point-based comparison

Image + pairwise terms (MICCAI 2009)

Region Mean (mm) RMS (mm) Max (mm)

Thoracic  vertebrae 2.01 2.25 5.26

Lumbar vertebrae 1.55 1.98 4.81

Total vertebrae 1.87 2.12 5.08

Image term

Region Mean (mm) RMS (mm) Max (mm)

Thoracic  vertebrae 9.35 11.41 53.07

Lumbar vertebrae 5.03 5.26 17.24

Total vertebrae 8.05 9.64 35.76

Higher order method

Region Mean (mm) RMS (mm) Max (mm)

Thoracic  vertebrae 1.54 1.73 4.64

Lumbar vertebrae 2.18 2.06 4.14

Total vertebrae 1.70 1.85 4.49
29



3D inference of articulated spine 
models from the manifold embedding

• Inference with respect to 
the manifold and shape 
parameters is performed 
using a High-order Markov 
Random Field (HOMRF). 

• Captures the statistical 
distribution of the 
underlying manifold and 
respects image support in 
the spatial domain

Kadoury et al., Nonlinear Embedding towards 
Articulated Spine Shape Inference using Higher-Order 
MRFs. MICCAI, 2010.
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Nearest neighbour selection

• Estimates the distance of articulated models i, j based on their 
representation as feature vectors Ai

abs and Aj
abs.

• Allowing to discern between articulated shape deformations in a 
topological invariant framework.

• Evaluates the intrinsic distances in the L2 norm and defines diffeomorphism
between rotation neighborhoods in M using geodesics.

• Rotational distances are computed with the following norm:

based on the geodesic distances (dG) in the 3D manifold.
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Ambient space mapping

Forward-inverse mapping used to obtain the articulation vector for a new 
embedded point in the ambient space.

 Theoretically the manifold should follow the                                                                       
conditional expectation which captures the                                                                     
regional trend of the data in D-space:

• Based on Nadaraya-Watson regression:

– Estimates the relationship between the D-space                                                                          
and manifold M data points as a joint distribution;

– Constrains the regression for similar data points                                                                            
in a local vicinity with Gaussian kernels. 
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Local shape appearances

• Capturing local object appearance lies on the assumption that global 
models, represented in a local neighborhood of M, will also manifest 
similar local geometries.

• Given a data point Yj

and its K neighbors, the                                                                                                          
local shape model si,                                                                                                           
representing the ith

element of the ADM,                                                                                                          
is obtained by building                                                                                                      
a particular class of                                                                                                        
shapes {s1

i,…, sK
i}.
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Inference through MRF optimization

• Inference with respect to image and manifold parameters is performed as 
a high order MRF optimization. 

• Optimal embedded manifold point Y = (y1,…,yd) represents the global
spine model and individual shape variation is described by the weight 
vector W= (w1,…,wn) in a localized sub-patch:

• Energy function E involves:

1. Data-related term expressing image cost.

2. Global prior term measuring support in manifold space.

3. Clique variables referring to local shape constellations.
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Global alignment of the ADM
• Image-related term V (Y0 + Δ, I) (unary potentials) attracts each L mesh

object of the ADM to the highest gradient potential:
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smoothness) ensure that the deformations  
applied to point coordinates is regular in the
non-linear vicinity of variations
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M. Kaus et al., IEEE 
TMI, 2003.
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• Optimization strategy of the energy term in the continuous domain:

– Convexity of the solution domain is not guaranteed.

– Prone to non-linearity and local minimums.

 Adopt a discrete optimization approach guaranteeing the global optimum

Inference problem is solved in a 
discrete domain by applying duality 
theory in linear programming.
N. Komodakis, et al. CVIU, 112(1):14–29, 2008

Energy minimization
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Experimental results
• Modeling pathological spinal columns 

represented as articulated shapes for CT 
inference.
– Training on 711 models exhibiting varying types of 

deformities.

– Meshes composed between 3831 and 6942 vertices.

– Evaluation on 20 pathological cases.
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Experiments on articulated arm poses 

• Arm-pose estimation from sparse scan range data acquisitions
(GRAIL, Univ. Wash.) (d = 5, n = 5, K = 8)

• 7 arm poses were tested with comparison to ground-truth and shape 
completion method7

7D. Anguelov et al. SCAPE: Shape Completion and Animation of
People. In SIGGRAPH, pages 408–416, 2005

Pose #6

Pose #3
38



• Shape analysis of articulated models is a challenging problem due to the 
difficulty in constraining the higher number of transformation variables. 

• Modeling complex, non-linear patterns of prior deformations in a 
Riemannian manifold embedding.

• Offers the possibility to learn the variations of spinal shape in complex 
corrective procedures.

• Whole spine body deformation is achieved by means of novel high order 
cliques in the optimization to impose global shape constraints.

• General applicability to discriminate between normal and pathological 
cases in other organs/modalities.

Conclusions
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