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Spinal deformities

* Adolescent Idiopathic Scoliosis (AlS):

= Complex and progressive 3D deformation of
the musculoskeletal trunk

= Radiographicimaging is the most frequently
used modality to evaluate the pathology

= Volumetric imaging modalities remains
limited (radiation dosage, posture)

* Surgical correction




Interventional X-ray & CBCT

CBCT acquisition
i.? _ > 7

Percutaneous vertebroplasties (nerves, vertebral articulations)

Trajectory planning

Fluoro image
guidance




e
Image-guided spinal surgery

* |Interventional operating room

— Fusion of pre-operative biplane model with CBCT images based on
articulated deformation using MRFs.

— Real-time inference of annotated geometrical spine model to tracked
fluoroscopic intra-operative data.

IKadoury et al. Medical Image Analysis (2011)



Variability in spine
deformation

High variability of the spine’s
natural curvature and complex
nonlinear structure.

Use of linear statistics (PCA) are
inapplicable to model such
articulated structures for diagnostic
or intra-operative imaging
purposes.

» To overcome these challenges, an

alternative approach maps the high-
dimensional observation data

(3D spine population) that are
presumed to lie on a nonlinear
manifold.
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2J. Boisvert, et al. Geometric variability of the
scoliotic spine using statistics on articulated shape
models. IEEE TMI (2008).



Outline
e Background on Locally Linear Embedding (LLE)

— Data representation
— Neighbourhood selection
— Creating the manifold embedding

* Pre-operative reconstruction of an articulated 3D spine
— Model initialization
— Regression functions for inverse mapping

* Pathology classification from the low-dimensional manifold

* Inference of the intra-operative spine geometry from CT
— Manifold-based constraints ensuring geometrical consistency

— Optimization of manifold parameters for direct model
representation



——
Locally Linear Embedding

* Nonlinear dimensionality reduction technique proposed by S. Roweis and L. Saul
(Science, 2000) for exploratory data analysis and visualization3.

* Analyze large amounts of multivariate data in order to discover a compact
representation of the high-dimensional data.

* Unsupervised learning algorithm that computes low-dimensional,
neighborhood-preserving embeddings of high-dimensional inputs.

 LLE is able to learn the global structure of nonlinear manifolds, revealing the
underlying distribution of the data which can be used for statistical modeling.
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Locally Linear Embedding

* Data consisting of N real-valued
observation vectors X, each of high

dimensionality D, sampled from some , © o °°,__q___® SIS
underlying manifold. o o T
o X ™
* Each data point and its neighbors o * °
assumed to lie on or close to a locally 00 ® o o
linear patch of the manifold. N v =
ey . . '
* Init’s simplest form, LLE identifies the K Re_constru?tw%
nearest neighbors per data point, as nonr doigin

measured by Euclidean distance.

* Local geometry of these patches by
linear coefficients that reconstruct each
data point from its neighbors.
Reconstruction errors are measured by
the cost function:

E(W):Z
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Locally Linear Embedding

Each high-dimensional observation X; is
mapped to a low-dimensional vector Y,
representing global internal coordinates on the
manifold. This is done by choosing d-
dimensional coordinates Y; to minimize the
embedding cost function:

N K
O(Y) =2 ¥ = 2 Wy,
i=1 j=1

Reconstruction weights Wj; reflect intrinsic
geometric properties of the data that are
invariant to the linear mapping —consisting of
a translation, rotation, and rescaling.

2

The same weights W that reconstruct the i*"
data point in D dimensions should also
reconstruct its embedded manifold
coordinates in d dimensions.
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Parameter selection !

100

ok |

60 -

501 \

I(K) (%)

* Neighborhood size K:

I S S R

B e I B R

T 7 a2e A . v ot
& reg 5 ve o . g o g inepe R Ry~ vy
. . 3'.;-;._ groe CRE By rf.'._:\ LA PO 333 5
E . / 5‘5;.': kg‘;-m aggrel 3, ",{-} 2 "‘y& g g?. Fs“El:."' e
' il 7 TR & R ey bt S
; - % B vl ] BaRan
s A Vi 1 F&’-’f A ¥ T et Lok T
T : ‘ & S s )
o : \ J K=5 K=6 ) K=10
H I "-. r L)
T e R PRNTTELE S
R o s I e S T R DA iy 3 T S
" # z:: e 3'3{ A A % e RSP S
K=4 K-8 Eogshade 3 b RS R
EARPE oM R TR e e e o
(R g Yo RN M Jeu o
Vol B A T ol g
A ':r.f’ # ) e }'#' K :'.' po-t "
K=12 K=14
£,
iy ?'{'4,' i
AT
ST ‘,"}
: R
b N SR
i R e e L R vy Bt

30+

Stability of the resulting embeddings determined from

the increase in the number of significant weights W(K) 0! e o
[Kouropteva et al., 2003]. L T I
K is large enough to capture most local contexts and the

resulting embedding space is relatively stable using
the increase in significant weights I(K):

W (K +1) =W (K)
W (K)

=

0. Kouropteva et al. Classification of Handwritten
digits using supervised locally linear embedding
algorithm and support vector machine. Symp. on
Artif. Neural Networks, pp. 229-234, 2003.

1(K) = x100
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Parameter selection -

* Intrinsic dimensionality d:

— Lowest residual variance p defined by the distance g
between pairs of data points can be used for
this purpose [Ridder et al., 2002].

— p=1-r%,p,, Where 12, is the standard linear R
correlation coefficient taken over all entries of Dy N L NUEL A
and Dy. Dy and Dy represent matrices of the
Euclidean distances between pairs of pointsin X 10
(input points in D-space) and Y (output points )
computed by LLE in d-space) 110_3 10* Y

Fi i ' 'f:,"';d;r‘
 Limited reliability of the number of 05 545 6 0 SRR
eigenvalues that are appreciable in o o
magnitude to the smallest nonzero e
eigenvalue of the cost matrix. T 10" : %




Application to face recognition

Images of faces mapped into the embedding
space (d=2) demonstrating the variability in
pose and expression.

L. Saul and S. Roweis, “Think globally, fit locally:

unsupervised learning of non-linear manifolds”, TR
MS CIS-02-18, U. Penn, 2002.

*  Projected points by LLE in embedding {small set with 20 samples)
- Regressed curve in embedding
+ Sampled new points along the curve

a*o*c*ad @l oﬂ .d ad@dladiadadiodiadad adlad
e e B B O S )

- Analytical representation of the manifold of

high-dimensional data by learning the
common information from high-density data to
estimate unseen points in the manifold.

J. Wang, et al. “An Analytical Mapping for LLE and Its
Application in Multi-Pose Face Synthesis”, 14th BMVC., 2003.
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Outline

* Pre-operative reconstruction of an articulated 3D spine
— Model initialization
— Regression functions for inverse mapping



e
Pre-operative 3D reconstruction

* Personalized 3D reconstruction of the pathological spine from

diagnostic biplanar X-ray images

Preop standing
X-rays

newl Prior atlas

$egmentation
refinement

Kadoury et al., IEEE TMI (28), 2009.

~ Personalized
p spine
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Statistical modeling of the spine

* Dimensionality reduction of the extracted spinal curve in the

low-dimensional manifold embedding.

 Generates an approximate
model from the closest
neighbors in a 3D database
containing 732 scoliotic
models.

* Manifold establishes the
patterns of legal variations
of spine shape changes in a
low-dimensional sub-space.

prd

k4

* Use of an analytical support
vector regression model to
accomplish the inverse
mapping of a new manifold
data point onto the high-
dimensional space.

3D spinal curve

“Locally Linear Embedding”

LLE subspace map from closest
neigbors of 3D curve

Y1

31D database Initial spine model
(6 points/vertebra)



Algorithm for generating approximate model

Multidimensional
distribution of scoliotic
models

Given N spine models expressed by the B-splines C(u);, C(u); € RP, ie[1,
N], each of dimensionality D, it provides N points Y;, Y; € RY, ie[1, N]
where d<<D. The algorithm has four sequential steps:

. Step 1. Select the K closest neighbors for each point using the Frechet
distance.

. Step 2. Solve the manifold reconstruction weights:

2

sW)=)

C(U), - X W,CW),

where C(u); is a data vector and ¢(W) sums the squared distances
between all data points and their corresponding reconstructed points.

. Step 3. Map each high-dimensional C(u); to a low-dimensional Y;,
representing the global internal coordinates using a cost function which
minimizes the reconstruction error :

DY) = i Y. — iwijvij

2

. Step 4. Apply an analytical method based on nonlinear regression to
perform the inverse mapping from the d embedding :

Xnew = F(Ynew) = [Xnew11"" XnewD2 ]T = [fl(Ynew)i"" fD2 (Ynew)]T

X; = fi(Y) = Zja;ik(Y,Y;) + b is a SVR regression model using a RBF kernel
Xnew = (S1, Sy,- -+, S17), Where s; is a vertebra model defined by s;= (p;, Py,---,
Pe), and p;= (X;, ¥;, Z;) is a 3D vertebral landmark



e
Biplanar reconstruction results

Effect of spinal curve accuracy on the initial statistical 3D model
7 T T T T T T T T T T

3D RMS reconstruction error (mm)

Standard deviation of error on 3D spinal curve (mm)
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* Pathology classification from the low-dimensional manifold
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Manifold-based
classification 3 :

M points

e C(lassification of 170 pre-
operative patients with main
thoracic deformities using a
non-linear manifold embedding

Select closest neighbors

Manifold embedding of prior models with articulated metric

l N neighbors

1 _ Locally linear embedding
* Extracted sub-groups from the . in manifold
underlying manifold structure R = N l d-dimension of
using an unsupervised - & M points
. Clustering of low- s & Unsu .
. . N pervised k-mean
clustering approach dlmenswn;lﬁ%ts ) Slustering
* Understand the inherent l k clusters
distribution and determine
. . Clinical data analysis
classes of pathologies which

appear from the low-
dimensional space Classification of

spine dataset
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Clustered sub-groups from the manifold

: Cluster 1
+ : Cluster 2
% 1 Cluster 3
#  Cluster 4

X3

1

Clustering of low-dimensional points

Kadoury et al., Classification of three-dimensional thoracic deformities in adolescent
idiopathic scoliosis from a multivariate analysis.
Eur. Spine J., 2011
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Clustered sub-groups from the manifold

\g1 cluster center C2 cluster center

Parameter Cluster | Cluster Il Cluster Il Cluster IV o m. ne
(n=37) (n =55) (n=21) (n=57) 1455 k o

Coronal Main o e i 3
Thoracic (MT) 53+ 11 39+9 45+ 14 45+ 9 | ( ::Tg) o,
Cobb angle (°) J “ﬁ‘i
Kyphosis (°) 31+15 26+ 12 19+12 39+12 21 507 13 t

L5 s d
Lordosis (°) -39+12 -32+15 -38+12 -33+12
MT plane of
maximum
curvature 61 + 30 71+31 45+ 24 53+ 25
(PMC) rotation
©

MT apical axial

rotation (°) -23+11 -11+8 -16 + 8 -22+8

Kadoury et al., Classification of three-dimensional thoracic deformities in adolescent
idiopathic scoliosis from a multivariate analysis.
Eur. Spine J., 2011
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* Inference of the intra-operative spine geometry from CT
— Manifold-based constraints ensuring geometrical consistency

— Optimization of manifold parameters for direct model
representation



Workflow for articulated 3D spine inference

The pre-operative 3D spine model is inferred to procedural CT data
acquired for corrective spine surgery

Optimality criterions

aaaaaaaaa

T smoothness
term

Multiresolution label search

The articulated spine model is optimized through a Markov Random Field
(MRF) graph in order to achieve multi-modal registration.

* We propose an approach which avoids CT image segmentation, is
computational efficient and solves the standing to lying pose deformation.



Articulated deformable model (ADM)
representation

* The spine model S =[s,,..., S, ] consists of an
interconnection of L vertebrae s; composed of:

» The 3D landmarks s;are used to rigidly register
each vertebra to its upper neighbour.

» Triangular meshes with vertices {v{ | j = 1,...,V}, where
the j" vertex corresponds to approximately the same location for every shape i.

« The ADM is represented by a vector of local
inter-vertebral rigid transformations modeled

by T={R, t} such that: A= [Tl,TZ,...,TN]

r/+1

e To perform global anatomical modeling of the spine,
we convert A to an absolute vector of transformations:

A, =T, T,oT,,...,T,oT,0...0T,]



Transformation inference from higher order
MRFs

 Asuccessful inference between S controlled by the articulations (A,
and the image | must be accomplished by establishing similarity criterions
which will drive the model deformation towards the optimal solution.

* Objective: determine optimal displacement vectors D ={al, : ..,an}
applied to the articulation T that give a good compromise between the
encoded prior constraints established by manifold statistics and the
fidelity to the image information:

(d,,...,d,) =argmin E(S°,1,(d;,...,d ))
d,

* Inturn, the energy function E can be decomposed into three costs related
to the displacement vectors D ={d,,...,d }in the transformation space :

E(S°,1,B)=V (A%, +D,1)+V(N,B)+V (H,D)



Singleton and pairwise potential terms

* Adata-related term V ( A%, + D, | ) expressing the image cost and a local
priorterm V (N, D ) measuring deformation between neighboring
vertebrae are integrated in E:

Pairwise constraints:
geometrical vertebral

5 -
E = ZVi (Ti + di ) dependencies
ieG (smoothness term)
0 1 0 J
+ ;> D> V(T +d,, T’ +d))
ieG jeN (i)
Singleton potentials: measures (T°+d)—(T°+d. )‘ <e
the support from the data (ex: Vij (0,D) = ' _: _,J ! '
image-based) without segmentation Hdi H — Hd j H <&,

V(T +d 1) = [ 7 (1,S(T +d)))dT WOr.g_L .

ieG



Higher order clique potentials

* Most energy minimization based methods for solving computer vision
problems assume the energy can be represented in terms of unary and

airwise potentials. . . .
P P Higher order clique variables encoded as

projected distances to manifold space:
» Capability to model complex interactions of
random variables.

Manifold induced by
Euclidean distances

Learned data *i-f._’,
manifold y
R
O
E‘; J
a ‘ -
u‘\‘ 5
R
. ‘/ :, §e
yre . b
£l c=0 . LR
e imic) Projected sample =
‘ metric space models Yo
-
! [ c=1 ﬂ&r )
W | @pical -+ :original embedded Sample cRei¥
| spine model I

\\O Spine model decomposed
A : projected new spine

A | é "4 > . . .
B into three regional cliques model (Y point)
nit) .




Manifold-constrained parameterization

* Potentials are parameterized with clique variables T taking on
corresponding costs 9q if the cliques are assigned to the
displacement vectors d. : Cost-assigning

function

__________

0N _ oni - 0y
VelTc)=ming min  6q+Aq(Tc ), Onack

* Costs 0, are manifold-defined geodesic distances evaluating the
projection of clique variable to the prior distribution M:

__________

0 -
E=Y V(T +d,I)
ieG
2 V. (T 0 d—' T 0 d—' Low-dimensional Projection onto
+ ij Z Z ij( i T3, i + j) clique representation manifold space M
1eG jeN (i)
High order constraints:

global geometrical dependencies for
a group of vertebrae



Point-based comparison

* Anatomical landmark deviations from “bronze-standard” are compared with
pairwise cost functions.

e Evaluation on 20 patients with low to moderate deformations.

_ Image + pairwise terms (Miccal 2009)

Thoracic vertebrae
Lumbar vertebrae 1.55 1.98 4.81

Total vertebrae 1.87 2.12 5.08

_ Higher order method

CER— T R

Thoracic vertebrae

Initial_alignlﬁent High order MRF inference

Lumbar vertebrae 2.18 2.06 4.14

Total vertebrae 1.70 1.85 4.49




3D inference of articulated spine
models from the manifold embedding

Articulated model

I O

i e A HO
Global Neighborhood
manifold shape PDM _

|

MRF Optimization

j
Image P.' _ = High-order
potential HIPWISE ter constraint
. . LR
Applications | §* Output
2 28 LE
2 5 E § L 3D inferred
2 & 5 8L
b, A B 0 model
(:) L‘y“. $
= e '
g& & "R Tracking
Segmentation

Population analysis

Inference with respect to
the manifold and shape
parameters is performed
using a High-order Markov
Random Field (HOMRF).

Captures the statistical
distribution of the
underlying manifold and
respects image support in
the spatial domain

Kadoury et al., Nonlinear Embedding towards
Articulated Spine Shape Inference using Higher-Order
MRFs. MICCAI, 2010.
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Nearest neighbour selection

» Estimates the distance of articulated models i, j based on their
representation as feature vectors Al . and Al ..

* Allowing to discern between articulated shape deformations in a
topological invariant framework.

abs !

dy (Al AL) = Y et —¢/ |+ do (R, RY)
k=1

* Evaluates the intrinsic distances in the L2 norm and defines diffeomorphism
between rotation neighborhoods in M using geodesics.

* Rotational distances are computed with the following norm:
do (Ri,R)) =[ log((R)™RY) |

based on the geodesic distances (dg) in the 3D manifold.



Ambient space mapping

Forward-inverse mapping used to obtain the articulation vector for a new
embedded point in the ambient space.

» Theoretically the manifold should follow the
conditional expectation which captures the  ¢y)=gaL |M(A)=Y)=[A POLA) 4
regional trend of the data in D-space: Pracay (Yi)

* Based on Nadaraya-Watson regression:

— Estimates the relationship between the D-space
and manifold M data points as a joint distribution; Z G(Y;,Y))d,, (AL AL)
: : . . foy (Y,) = arg min =IO
— Constrains the regression for similar data points ' A Z N()@(y_ Y;)
abs je i i?

in a local vicinity with Gaussian kernels.




Local shape appearances

* Capturing local object appearance lies on the assumption that global
models, represented in a local neighborhood of M, will also manifest
similar local geometries.

. . A -'\4,\,
* Given a data point Y; S DRI S S e
and its K neighbors, the.| .. " . -
local shape model's;, ~ * gt B
representing the it [t b £
element of the ADM, N e e , L} -
is obtained by bUIldlng ‘;r—;‘; i T Mean Mode 1 3SD

a particular class of

shapes {s%,..., sK.}. e | \"’ \r u
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Inference through MRF optimization

* Inference with respect to image and manifold parameters is performed as
a high order MRF optimization.

* Optimal embedded manifold point Y = (Yyy,...,y4) represents the global
spine model and individual shape variation is described by the weight

vector W= (wjy,...,w,) in a localized sub-patch:

{10 Vo iAWy oo W, F) =argmin E(S°, 1,4, Q)

o,w

e Energy function E involves:
e Data-related term expressing image cost.
@ Global prior term measuring support in manifold space.
@ Cligue variables referring to local shape constellations.

E(S°,1,A,Q)=V(Y°+A,1)+aV(N,A)+ BV (H, A Q)

@ @ @
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Global alignment of the ADM

* Image-related term V (Y%+ A, I) (unary potentials) attracts each L mesh
object of the ADM to the highest gradient potential:

Surface model V (YO + A, | ):V(fNW({yl +51,..., Yq +5d}),| )
~ N L
o =V(A%, +D,1)=>V(s *(T° +d,),1)
Image N Vertex =
gradient Triangle

barycentre BER) V,(s,1) =—> nT (V))VI(V,)
// i
> > -  Pairwise potentials V (N, A) (anatomical
n; smoothness) ensure that the deformations
A~ direction of applied to point coordinates is regular in the

VI

object

Optimal point V'

e attraction ) .. ..
S non-linear vicinity of variations
M.Kausetal.,IEEE//
TMI, 2003. . 0 0
V(N,A)= E Evij.(yi +5i,yj+5j)
ieG jeN(i) "

= Vy =P +8) - (5 +5)| N )




Energy minimization

e Optimization strategy of the energy term in the continuous domain:
— Convexity of the solution domain is not guaranteed.

— Prone to non-linearity and local minimums.

E(S°1,A,Q)=V(fuw (Y +Sreers Yo + 3,1, 1)
+az Z Vij(yio+5:i’y(j)+gj)

ieG jeN{(i)

+5D Vo (W! + )

ceC

» Adopt a discrete optimization approach guaranteeing the global optimum

(2. 133112,...,193)= argmin E(S°,1,1%,1?)

121 el L

cCX
“— i :W >
y c'x Inference problem is solved in a
“— =g . . . .
C X discrete domain by applying duality
,—vbT ch* cTx theory in linear programming.
[ ‘—| N. Komodakis, et al. CVIU, 112(1):14-29, 2008

dual cost of cost of optimal primal cost of
solution y integral solution x* integral solution x



Experimental results

* Modeling pathological spinal columns
represented as articulated shapes for CT

inference.

— Training on 711 models exhibiting varying types of

deformities.

— Meshes composed between 3831 and 6942 vertices.

— Evaluation on 20 pathological cases.
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Experiments on articulated arm poses

* Arm-pose estimation from sparse scan range data acquisitions
(GRAIL, Univ. Wash.) (d=5,n=5, K=8)

» 7 arm poses were tested with comparison to ground-truth and shape
completion method’

SCAPE-like [ ] Proposed method
Pose Land.(mm) | Surf. | Land.(mm) | Surf.
#1 3.6 1.7 8.4 2.1 =038 4.3
#32 4414 8.6 1.5+ 1.0 4.0
#3 6.8 29 10.5 4.1 +2.5 5.5
#4 5.3+33 0.1 3.4+1.0 6.1
#5 45+23 8.7 46129 3.2
#6 7.1 =3.5 11.2 29+08 4.3

7 3016 6.9 1.2 +0.5 2.6

’D. Anguelov et al. SCAPE: Shape Completion and Animation of
People. In SIGGRAPH, pages 408-416, 2005




Conclusions

* Shape analysis of articulated models is a challenging problem due to the
difficulty in constraining the higher number of transformation variables.

* Modeling complex, non-linear patterns of prior deformations in a
Riemannian manifold embedding.

e Offers the possibility to learn the variations of spinal shape in complex
corrective procedures.

* Whole spine body deformation is achieved by means of novel high order
cligues in the optimization to impose global shape constraints.

* General applicability to discriminate between normal and pathological
cases in other organs/modalities.
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