

14th International Conference on Medical Image Computing and Computer Assisted Intervention

Manifold embedding for modeling spinal deformations

Samuel Kadoury

Philips Research North America

MICCAI 2011 Tutorial on Manifold Learning with Medical Images September 22th, 2011

Spinal deformities

- Adolescent Idiopathic Scoliosis (AIS):
 - Complex and progressive 3D deformation of the musculoskeletal trunk
 - Radiographic imaging is the most frequently used modality to evaluate the pathology
 - Volumetric imaging modalities remains limited (radiation dosage, posture)
- Surgical correction

Interventional X-ray & CBCT

CBCT acquisition

Trajectory planning

Fluoro image guidance

Image-guided spinal surgery

Interventional operating room

- Fusion of pre-operative biplane model with CBCT images based on articulated deformation using MRFs.
- Real-time inference of annotated geometrical spine model to tracked fluoroscopic intra-operative data.

Variability in spine deformation

- High variability of the spine's natural curvature and complex nonlinear structure.
- Use of linear statistics (PCA) are inapplicable to model such articulated structures for diagnostic or intra-operative imaging purposes.
- To overcome these challenges, an alternative approach maps the high-dimensional observation data (3D spine population) that are presumed to lie on a nonlinear manifold.

Outline

- Background on Locally Linear Embedding (LLE)
 - Data representation
 - Neighbourhood selection
 - Creating the manifold embedding
- Pre-operative reconstruction of an articulated 3D spine
 - Model initialization
 - Regression functions for inverse mapping
- Pathology classification from the low-dimensional manifold
- Inference of the intra-operative spine geometry from CT
 - Manifold-based constraints ensuring geometrical consistency
 - Optimization of manifold parameters for direct model representation

Locally Linear Embedding

- Nonlinear dimensionality reduction technique proposed by S. Roweis and L. Saul (Science, 2000) for exploratory data analysis and visualization³.
- Analyze large amounts of multivariate data in order to discover a compact representation of the high-dimensional data.
- Unsupervised learning algorithm that computes low-dimensional, neighborhood-preserving embeddings of high-dimensional inputs.
- LLE is able to learn the global structure of nonlinear manifolds, revealing the underlying distribution of the data which can be used for statistical modeling.

³S. Roweis and L. Saul. Nonlinear Dimensionality Reduction by Locally Linear Embedding. *Science 22 December 2000: pp. 2323-2326*

Locally Linear Embedding

- Data consisting of N real-valued observation vectors X_i, each of high dimensionality D, sampled from some underlying manifold.
- Each data point and its neighbors assumed to lie on or close to a locally linear patch of the manifold.
- In it's simplest form, LLE identifies the K nearest neighbors per data point, as measured by Euclidean distance.
- Local geometry of these patches by linear coefficients that reconstruct each data point from its neighbors. Reconstruction errors are measured by the cost function:

$$\varepsilon(W) = \sum_{i=1}^{N} \left\| X_i - \sum_{j=1}^{K} W_{ij} X_{ij} \right\|^2$$

Locally Linear Embedding

 Each high-dimensional observation X_i is mapped to a low-dimensional vector Y_i representing global internal coordinates on the manifold. This is done by choosing ddimensional coordinates Y_i to minimize the embedding cost function:

$$\Phi(Y) = \sum_{i=1}^{N} \left\| Y_i - \sum_{j=1}^{K} W_{ij} Y_{ij} \right\|^2$$

- Reconstruction weights W_{ij} reflect intrinsic geometric properties of the data that are invariant to the linear mapping —consisting of a translation, rotation, and rescaling.
- The same weights W_{ij} that reconstruct the i^{th} data point in D dimensions should also reconstruct its embedded manifold coordinates in d dimensions.

Parameter selection

- Neighborhood size *K*:
 - Stability of the resulting embeddings determined from the increase in the number of significant weights W(K) [Kouropteva et al., 2003].
 - K is large enough to capture most local contexts and the resulting embedding space is relatively stable using the increase in significant weights *I(K)*:

$$I(K) = \frac{W(K+1) - W(K)}{W(K)} \times 100$$

O. Kouropteva et al. Classification of Handwritten digits using supervised locally linear embedding algorithm and support vector machine. *Symp. on Artif. Neural Networks*, pp. 229-234, 2003.

Parameter selection

- Intrinsic dimensionality *d*:
 - Lowest residual variance ρ defined by the distance between pairs of data points can be used for this purpose [Ridder et al., 2002].
 - $\rho = 1 r_{DxDy}^2$, where r_{DxDy}^2 is the standard linear correlation coefficient taken over all entries of D_X and D_Y . D_X and D_Y represent matrices of the Euclidean distances between pairs of points in X (input points in D-space) and Y (output points computed by LLE in d-space)
- Limited reliability of the number of eigenvalues that are appreciable in magnitude to the smallest nonzero eigenvalue of the cost matrix.

Application to face recognition

Images of faces mapped into the embedding space (d=2) demonstrating the variability in pose and expression.

L. Saul and S. Roweis, "Think globally, fit locally: unsupervised learning of non-linear manifolds", *TR MS CIS-02-18*, U. Penn, 2002.

- Projected points by LLE in embedding (small set with 20 samples)
- Regressed curve in embedding
 Sampled new points along the curve

Analytical representation of the manifold of high-dimensional data by learning the common information from high-density data to estimate unseen points in the manifold.

J. Wang, et al. "An Analytical Mapping for LLE and Its Application in Multi-Pose Face Synthesis", *14th BMVC.*, 2003.

Outline

- Background on Locally Linear Embedding (LLE)
 - Data representation
 - Neighbourhood selection
 - Creating the manifold embedding
- Pre-operative reconstruction of an articulated 3D spine
 - Model initialization
 - Regression functions for inverse mapping
- Pathology classification from the low-dimensional manifold
- Inference of the intra-operative spine geometry from CT
 - Manifold-based constraints ensuring geometrical consistency
 - Optimization of manifold parameters for direct model representation

Pre-operative 3D reconstruction

 Personalized 3D reconstruction of the pathological spine from diagnostic biplanar X-ray images
 Kadoury et al., IEEE TMI (28), 2009.

Statistical modeling of the spine

- Dimensionality reduction of the extracted spinal curve in the low-dimensional manifold embedding.
- Generates an approximate model from the closest neighbors in a 3D database containing 732 scoliotic models.
- Manifold establishes the patterns of legal variations of spine shape changes in a low-dimensional sub-space.
- Use of an analytical support vector regression model to accomplish the inverse mapping of a new manifold data point onto the highdimensional space.

Algorithm for generating approximate model

Given N spine models expressed by the B-splines $C(u)_i$, $C(u)_i \in R^D$, $i \in [1, N]$, each of dimensionality D, it provides N points Y_i , $Y_i \in R^d$, $i \in [1, N]$ where d << D. The algorithm has four sequential steps:

- **Step 1.** Select the *K* closest neighbors for each point using the Frechet distance.
- Step 2. Solve the manifold reconstruction weights:

٠

$$\varepsilon(W) = \sum_{i=1}^{N} \left\| C(u)_i - \sum_{j=1}^{K} W_{ij} C(u)_{ij} \right\|^2$$

where $C(u)_i$ is a data vector and $\varepsilon(W)$ sums the squared distances between all data points and their corresponding reconstructed points.

Step 3. Map each high-dimensional $C(u)_i$ to a low-dimensional Y_i , representing the global internal coordinates using a cost function which minimizes the reconstruction error :

$$\Phi(Y) = \sum_{i=1}^{N} \left\| Y_i - \sum_{j=1}^{K} W_{ij} Y_{ij} \right\|^2$$

Step 4. Apply an analytical method based on nonlinear regression to perform the inverse mapping from the *d* embedding :

$$X_{new} = F(Y_{new}) = [x_{new1}, ..., x_{newD2}]^T = [f_1(Y_{new}), ..., f_{D2}(Y_{new})]^T$$

 $x_i = f_i(Y) = \sum_j \alpha_{ij} k(Y,Y_i) + b$ is a SVR regression model using a RBF kernel $X_{new} = (s_1, s_2, ..., s_{17})$, where s_i is a vertebra model defined by $s_i = (p_1, p_2, ..., p_6)$, and $p_i = (x_i, y_i, z_i)$ is a 3D vertebral landmark

Multidimensional distribution of scoliotic models

Outline

- Background on Locally Linear Embedding (LLE)
 - Data representation
 - Neighbourhood selection
 - Creating the manifold embedding
- Pre-operative reconstruction of an articulated 3D spine
 - Model initialization
 - Regression functions for inverse mapping
- Pathology classification from the low-dimensional manifold
- Inference of the intra-operative spine geometry from CT
 - Manifold-based constraints ensuring geometrical consistency
 - Optimization of manifold parameters for direct model representation

Manifold-based classification

- Classification of 170 preoperative patients with main thoracic deformities using a non-linear manifold embedding
- Extracted sub-groups from the underlying manifold structure using an unsupervised clustering approach
- Understand the inherent distribution and determine classes of pathologies which appear from the lowdimensional space

Clustered sub-groups from the manifold

Clustering of low-dimensional points

Kadoury et al., Classification of three-dimensional thoracic deformities in adolescent idiopathic scoliosis from a multivariate analysis. Eur. Spine J., 2011

Clustered sub-groups from the manifold

Parameter	Cluster I (<i>n</i> = 37)	Cluster II (<i>n</i> = 55)	Cluster III (<i>n</i> = 21)	Cluster IV (<i>n</i> = 57)
Coronal Main Thoracic (MT) Cobb angle (°)	53 ± 11	39 ± 9	45 ± 14	45 ± 9
Kyphosis (°)	31 ± 15	26 ± 12	19 ± 12	39 ± 12
Lordosis (°)	$\textbf{-39}\pm\textbf{12}$	-32 ± 15	-38 ± 12	$\textbf{-33}\pm\textbf{12}$
MT plane of maximum curvature (PMC) rotation (°)	61 ± 30	71 ± 31	45 ± 24	53 ± 25
MT apical axial rotation (°)	-23 ± 11	-11 ± 8	-16 ± 8	-22 ± 8

Kadoury et al., Classification of three-dimensional thoracic deformities in adolescent idiopathic scoliosis from a multivariate analysis. Eur. Spine J., 2011

Outline

- Background on Locally Linear Embedding (LLE)
 - Data representation
 - Neighbourhood selection
 - Creating the manifold embedding
- Pre-operative reconstruction of an articulated 3D spine
 - Model initialization
 - Regression functions for inverse mapping
- Pathology classification from the low-dimensional manifold
- Inference of the intra-operative spine geometry from CT
 - Manifold-based constraints ensuring geometrical consistency
 - Optimization of manifold parameters for direct model representation

Workflow for articulated 3D spine inference

• The pre-operative 3D spine model is inferred to procedural CT data acquired for corrective spine surgery

- The articulated spine model is optimized through a Markov Random Field (MRF) graph in order to achieve multi-modal registration.
- We propose an approach which avoids CT image segmentation, is computational efficient and solves the standing to lying pose deformation.

Articulated deformable model (ADM) representation

- The spine model $\mathbf{S} = [s_1, ..., s_L]$ consists of an interconnection of *L* vertebrae s_i composed of:
 - The 3D landmarks s_i are used to rigidly register each vertebra to its upper neighbour.

 V_{I}

 v_{v}

 $T_l = (r_l, t_l)$

 V_{l+1}

- Triangular meshes with vertices {v_i^j | j = 1,...,V}, where the jth vertex corresponds to approximately the same location for every shape i.
- The ADM is represented by a vector of local inter-vertebral rigid transformations modeled by $T = \{R, t\}$ such that: $A = [T_1, T_2, \dots, T_N]$
- To perform global anatomical modeling of the spine, we convert A to an absolute vector of transformations:

$$\mathbf{A}_{\mathbf{abs}} = \begin{bmatrix} T_1, T_1 \circ T_2, \dots, T_1 \circ T_2 \circ \dots \circ T_N \end{bmatrix}$$

T_{global}

Transformation inference from higher order MRFs

- A successful inference between S^0 controlled by the articulations (A_{abs}) and the image I must be accomplished by establishing similarity criterions which will drive the model deformation towards the optimal solution.
- **Objective**: determine optimal displacement vectors $D = \{\vec{d}_1, ..., \vec{d}_n\}$ applied to the articulation T that give a good compromise between the encoded prior constraints established by manifold statistics and the fidelity to the image information:

$$(\vec{d}_1,\ldots,\vec{d}_n) = \operatorname*{argmin}_{\vec{d}_i} E(S^0, I, (\vec{d}_i,\ldots,\vec{d}_n))$$

• In turn, the energy function E can be decomposed into three costs related to the displacement vectors $\vec{D} = \{\vec{d}_i, \dots, \vec{d}_n\}$ in the transformation space :

$$E\left(\mathbf{S}^{\mathbf{0}}, I, \vec{D}\right) = V\left(\mathbf{A}_{abs}^{\mathbf{0}} + \vec{D}, I\right) + V\left(\mathbf{N}, \vec{D}\right) + V\left(\mathbf{H}, \vec{D}\right)$$

Singleton and pairwise potential terms

A data-related term V (A⁰_{abs} + D, I) expressing the image cost and a local prior term V (N, D) measuring deformation between neighboring vertebrae are integrated in E:

Higher order clique potentials

 Most energy minimization based methods for solving computer vision problems assume the energy can be represented in terms of unary and pairwise potentials.

Manifold-constrained parameterization

• Potentials are parameterized with clique variables T_c taking on corresponding costs θ_q if the cliques are assigned to the displacement vectors d_c :

$$V_c(\mathbf{T}_c^0) = \min\{\min_{q \in \{1,2,\dots,t\}} \theta_q + \Delta_q(\mathbf{T}_c^0), \theta_{\max}\}$$

• Costs θ_q are manifold-defined geodesic distances evaluating the projection of clique variable to the prior distribution M:

ш

ЦЦ –

a group of vertebrae

Point-based comparison

- Anatomical landmark deviations from "bronze-standard" are compared with pairwise cost functions.
- Evaluation on 20 patients with low to moderate deformations. •

	Image + pairwise terms (MICCAI 2009)			
Region	Mean (mm)	RMS (mm)	Max (mm)	
Thoracic vertebrae	2.01	2.25	5.26	
Lumbar vertebrae	1.55	1.98	4.81	
Total vertebrae	1.87	2.12	5.08	

	Higher order method			
Region	Mean (mm)	RMS (mm)	Max (mm)	
Thoracic vertebrae	1.54	1.73	4.64	
Lumbar vertebrae	2.18	2.06	4.14	
Total vertebrae	1.70	1.85	4.49	

High order MRF inference

3D inference of articulated spine models from the manifold embedding

- Inference with respect to the manifold and shape parameters is performed using a High-order Markov Random Field (HOMRF).
- Captures the statistical distribution of the underlying manifold and respects image support in the spatial domain

Kadoury et al., Nonlinear Embedding towards Articulated Spine Shape Inference using Higher-Order MRFs. MICCAI, 2010.

Nearest neighbour selection

- Estimates the distance of articulated models *i*, *j* based on their representation as feature vectors Aⁱ_{abs} and A^j_{abs}.
- Allowing to discern between articulated shape deformations in a topological invariant framework.

$$d_{M}(\mathbf{A}_{\text{abs}}^{i}, \mathbf{A}_{\text{abs}}^{j}) = \sum_{k=1}^{L} \left\| c_{k}^{i} - c_{k}^{j} \right\| + d_{G}(R_{k}^{i}, R_{k}^{j})$$

- Evaluates the intrinsic distances in the L2 norm and defines diffeomorphism between rotation neighborhoods in *M* using geodesics.
- Rotational distances are computed with the following norm:

$$d_G(R_k^i, R_k^j) = \|\log((R_k^i)^{-1}R_k^j)\|_F$$

based on the geodesic distances (d_G) in the 3D manifold.

Ambient space mapping

Forward-inverse mapping used to obtain the articulation vector for a new embedded point in the ambient space.

Theoretically the manifold should follow the conditional expectation which captures the regional trend of the data in *D*-space:

$$f(Y_i) = E(\mathbf{A}_{abs}^i | M(A_i) = Y_i) = \int A_i \frac{p(Y_i, A_i)}{p_{M(A_i)}(Y_i)} dD$$

- Based on Nadaraya-Watson regression:
 - Estimates the relationship between the *D*-space and manifold *M* data points as a joint distribution;
 - Constrains the regression for similar data points in a local vicinity with Gaussian kernels.

;
$$f_{NW}(Y_i) = \underset{\mathbf{A}_{abs}^i}{\operatorname{argmin}} \frac{\sum_{j \in N(i)} G(Y_i, Y_j) d_M(\mathbf{A}_{abs}^i, \mathbf{A}_{abs}^j)}{\sum_{j \in N(i)} G(Y_i, Y_j)}$$

Local shape appearances

 Capturing local object appearance lies on the assumption that global models, represented in a local neighborhood of *M*, will also manifest similar local geometries.

Given a data point Y_j and its K neighbors, the local shape model \mathbf{s}_i , representing the i^{th} element of the ADM, is obtained by building a particular class of shapes $\{\mathbf{s}^1, \dots, \mathbf{s}^K_i\}$.

Inference through MRF optimization

- Inference with respect to image and manifold parameters is performed as a high order MRF optimization.
- Optimal embedded manifold point Y = (y₁,...,y_d) represents the global spine model and individual shape variation is described by the weight vector W= (w₁,...,w_n) in a localized sub-patch:

$$(\{\mathbf{y}_1,...,\mathbf{y}_d\};\{\mathbf{w}_1,...,\mathbf{w}_n\}) = \operatorname*{arg\,min}_{\delta,\omega} E(\mathbf{S}^0, I, \Delta, \Omega)$$

• Energy function *E* involves:

1

(2)

3

Data-related term expressing image cost.

Global prior term measuring support in manifold space.

Clique variables referring to local shape constellations.

$$E(\mathbf{S}^{0}, I, \Delta, \Omega) = V(\mathbf{Y}^{0} + \Delta, I) + \alpha V(\mathbf{N}, \Delta) + \beta V(\mathbf{H}, \Delta, \Omega)$$

3

Global alignment of the ADM

• Image-related term $V(\mathbf{Y}^0 + \Delta, I)$ (unary potentials) attracts each L mesh object of the ADM to the highest gradient potential:

Surface model

$$V\left(\mathbf{Y}^{0} + \Delta, I\right) = V\left(f_{NW}\left(\{y_{1} + \delta_{1}, ..., y_{d} + \delta_{d}\}\right), I\right)$$

$$= V\left(\mathbf{A}_{abs}^{0} + \vec{D}, I\right) = \sum_{i=1}^{L} V_{i}\left(s_{i} * (T_{i}^{0} + d_{i}), I\right)$$

$$= V\left(\mathbf{A}_{abs}^{0} + \vec{D}, I\right) = \sum_{i=1}^{L} V_{i}\left(s_{i} * (T_{i}^{0} + d_{i}), I\right)$$

$$= V\left(\mathbf{A}_{abs}^{0} + \vec{D}, I\right) = \sum_{i=1}^{L} V_{i}\left(s_{i} * (T_{i}^{0} + d_{i}), I\right)$$

$$= V\left(\mathbf{A}_{abs}^{0} + \vec{D}, I\right) = \sum_{i=1}^{L} V_{i}\left(s_{i} * (T_{i}^{0} + d_{i}), I\right)$$

$$= V\left(\mathbf{A}_{abs}^{0} + \vec{D}, I\right) = \sum_{i=1}^{L} V_{i}\left(s_{i} * (T_{i}^{0} + d_{i}), I\right)$$

$$= V\left(\mathbf{A}_{abs}^{0} + \vec{D}, I\right) = \sum_{i=1}^{L} V_{i}\left(s_{i} * (T_{i}^{0} + d_{i}), I\right)$$

$$= V\left(\mathbf{A}_{abs}^{0} + \vec{D}, I\right) = \sum_{i=1}^{L} V_{i}\left(s_{i} * (T_{i}^{0} + d_{i}), I\right)$$

$$= V\left(\mathbf{A}_{abs}^{0} + \vec{D}, I\right) = \sum_{i=1}^{L} V_{i}\left(s_{i} * (T_{i}^{0} + d_{i}), I\right)$$

$$= V\left(\mathbf{A}_{abs}^{0} + \vec{D}, I\right) = \sum_{i=1}^{L} V_{i}\left(s_{i} * (T_{i}^{0} + d_{i}), I\right)$$

$$= V\left(\mathbf{A}_{abs}^{0} + \vec{D}, I\right) = \sum_{i=1}^{L} V_{i}\left(s_{i} * (T_{i}^{0} + d_{i}), I\right)$$

$$= V\left(\mathbf{A}_{abs}^{0} + \vec{D}, I\right) = \sum_{i=1}^{L} V_{i}\left(s_{i} * (T_{i}^{0} + d_{i}), I\right)$$

$$= V\left(\mathbf{A}_{abs}^{0} + \vec{D}, I\right) = \sum_{i=1}^{L} V_{i}\left(s_{i} * (T_{i}^{0} + d_{i}), I\right)$$

$$= V\left(\mathbf{A}_{abs}^{0} + \vec{D}, I\right)$$

$$= V\left(\mathbf{A}_{abs}^{0} + \vec{D}, I\right) = \sum_{i=1}^{L} V_{i}\left(s_{i} * (T_{i}^{0} + d_{i}), I\right)$$

$$= V\left(\mathbf{A}_{abs}^{0} + \vec{D}, I\right)$$

$$= V\left(\mathbf{A}_{abs}^{0} + \vec{$$

Energy minimization

- Optimization strategy of the energy term in the continuous domain:
 - Convexity of the solution domain is not guaranteed.
 - Prone to non-linearity and local minimums.

$$E(\mathbf{S}^{0}, I, \vec{\Delta}, \Omega) = V(f_{NW}(\{y_{1} + \vec{\delta}_{1}, ..., y_{d} + \vec{\delta}_{d}\}), I)$$
$$+ \alpha \sum_{i \in G} \sum_{j \in N(i)} V_{ij}(y_{i}^{0} + \vec{\delta}_{i}, y_{j}^{0} + \vec{\delta}_{j})$$
$$+ \beta \sum_{c \in C} V_{c}(\mathbf{w}_{c}^{0} + \omega_{c})$$

Adopt a discrete optimization approach guaranteeing the global optimum

Experimental results

- Modeling pathological spinal columns represented as articulated shapes for CT inference.
 - Training on 711 models exhibiting varying types of deformities.
 - Meshes composed between 3831 and 6942 vertices.
 - Evaluation on 20 pathological cases.

Experiments on articulated arm poses

- Arm-pose estimation from sparse scan range data acquisitions (GRAIL, Univ. Wash.) (d = 5, n = 5, K = 8)
- 7 arm poses were tested with comparison to ground-truth and shape completion method⁷

	SCAPE-like [2]		Proposed method	
Pose	Land.(mm)	Surf.	Land.(mm)	Surf.
#1	3.6 ± 1.7	8.4	2.1 ± 0.8	4.3
#2	4.4 ± 1.4	8.6	1.5 ± 1.0	4.0
#3	6.8 ± 2.9	10.5	4.1 ± 2.5	5.5
#4	5.3 ± 3.3	9.1	3.4 ± 1.0	6.1
#5	4.5 ± 2.3	8.7	4.6 ± 2.9	3.2
#6	7.1 ± 3.5	11.2	2.9 ± 0.8	4.3
#7	3.0 ± 1.6	6.9	1.2 ± 0.5	2.6

⁷D. Anguelov et al. SCAPE: Shape Completion and Animation of People. In SIGGRAPH, pages 408–416, 2005

Conclusions

- Shape analysis of articulated models is a challenging problem due to the difficulty in constraining the higher number of transformation variables.
- Modeling complex, non-linear patterns of prior deformations in a Riemannian manifold embedding.
- Offers the possibility to learn the variations of spinal shape in complex corrective procedures.
- Whole spine body deformation is achieved by means of novel high order cliques in the optimization to impose global shape constraints.
- General applicability to discriminate between normal and pathological cases in other organs/modalities.

Thank you

Sponsoring parties:

et les technologies Québec 🔹 🔹

Fonds de recherche sur la nature

Acknowledgments:

Nikos Paragios Dr. Hubert Labelle Philippe Labelle