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A. Details of the Umeyama Method

The absolute orientation method of Umeyama [2] com-
putes the similarity transformation which minimizes the
mean squared distance between two point sets A and B of
arbitrary dimension d, that is

e2(R, t, c) =
1
n

n∑
i=1

‖Bi − (cRAi + t)‖2 , (1)

where c is the scaling factor, t is the translation vector, and
R is the rotation matrix, and n is the number of points.

The following outline follows closely the excellent de-
scription given in [2]. The single entities are computed
based on the SVD decomposition of the covariance matrix

CAB =
1
n

n∑
i=1

(Bi − µB)(Ai − µA)> (2)

of the n corresponding points, such that CAB = UDV >.
Here, µA and µB are the respective mean values and the
ascending non-negative values of the diagonal matrix D are
denoted by di. The standard deviations are given by σA and
σB .

The matrix S is defined in the following way.

S =
{

I det(CAB) ≥ 0
diag(1, 1, . . . ,−1) det(CAB) < 0 , (3)

where I denotes the identity matrix.

When rank(CAB) ≥ d− 1, the similarity parameters are
given by

R = USV > (4)
t = µB − cRµA (5)

c =
1

σ2
A

tr(DS) . (6)

In the Equation (4), the matrix S is defined depending on
the rank of the covariance matrix CAB .

If rank(CAB) = d− 1 then, S is defined as

S =
{

I det(U) det(V ) = 1
diag(1, 1, . . . ,−1) det(U) det(V ) = −1 .

(7)
Otherwise, the definition from (3) is used.

For the proofs of the optimality of the above estimation,
please refer to the original paper [2].

B. Discussion of PCA on Limited Number
of Samples, and Consequences for Non-
Minimal Deformations

In the following we discuss some details of the general
behavior of the PCA for finite number of samples B.1. We
see that for a limited number of samples, not the actual
modes generating the data, but their linear combinations
are reconstructed. From this general observation, we pro-
ceed in Section B.2 by applying this to the case of non-
minimal deformations, which can be seen as composed of
linear similarity transformations and nonlinear deformation
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(a) 42 samples (b) 62 samples (c) 122 samples

Figure 1: Example showing how the variance of first linear mode (blue area) is mixed with the remaining variance (red area)
in the first modes, if a finite number of samples is used. The black curve shows the true variance of the 2nd to last modes.

modes. We conclude that in general it can be expected, that
the similarity transformation is mixed with the first nonlin-
ear modes od the resulting model, thus corrupting the ability
of the model to describe shape.

B.1. PCA Based on a Limited Number of Samples

An alternative formulation of PCA than the minimization
of reconstruction error, is to search for the orthonormal pro-
jections that maximize the variance of data projected onto
the subspace spanned by the eigenvectors.

max
w

E{(w>u)2} , where ‖w‖ = 1 , (8)

where the components w are estimated sequentially, with
the constraint that they should be orthogonal to each other.

Consider the true deformation field u∗ to be a stochastic
variable formed by a linear combination of uncorrelated fac-
tors (since the shape modeling is independent of the mean
field, we will for simplicity of notification assume that the
mean field is zero in the rest of the derivation).

u∗ = V∗Λ
1/2
∗ b∗ , (9)

where V∗ consists of a set of orthonormal vectors, the so-
called modes, Λ1/2

∗ is a diagonal matrix with diagonal el-
ements λ

1/2
∗i , which in effect scale the components, and b∗

denotes a stochastic vector with uncorrelated elements of
unit variance. We remark that this representation of the mix-
ture can be achieved for all linear combination models, and
as a consequence adds no further constrains.

When we estimate the modes, it is the optimum projec-
tion w that we are looking for. When applying the described
assumptions on u we get

E{(w>u)2} = E{(w>V∗Λ
1/2
∗ b∗)2} (10)

= w>V∗Λ
1/2
∗ E{b∗b>∗ }Λ

1/2
∗ V >

∗ w ,(11)

and since b∗ is a vector of uncorrelated variables, in theory
E{b∗b>∗ } = Ip, where Ip is the identity matrix with dimen-
sion p, and the optimization problem becomes

max
w

w>V∗Λ∗V >
∗ w , (12)

We see that the PCA solution to (12) is actually the gener-
ating model (9) itself, where [w1, ...,wn] = V .

However, in real applications the expectancy of the co-
variance matrix b∗b

>
∗ would be calculated by

E{b∗b>∗ } ≈
1

N − 1

N∑
i=1

bib
>
i = Cb 6= Ip . (13)

which is the unbiased estimator under assumption of normal
distributed vectors. It can be seen that in spite of uncorre-
lated elements of the vector b∗ the sum in (13) will not be
an identity matrix. Soper described in 1913 the distribution
of correlation coefficients, and a not so surprising conclu-
sion that can be drawn from that is, that though the correla-
tion between two uncorrelated variables is zero in average,
it is more likely, in the case of a limited number of sam-
ples, that it actually attains a value different from zero [1].
Regarding the distribution of correlation coefficients, it can
be stated that for actual measurements, though the correla-
tion between two uncorrelated variables is zero in average,
it is more likely - in the case of a limited number of sam-
ples - that it actually attains a value different from zero. Let
wV be the projection of the estimated mode on to the true
modes V∗ of the data, then the estimation of the principal
modes can be written as

max
wV

w>
V Λ1/2

∗ CbΛ
1/2
∗ wV , (14)

From this we observe that, in general, w is not just pro-
jected onto one component (meaning only one element of
wV would be 1 and the rest 0), but wV is rather found as a



(a) Synthetic spoon example (relative error) (b) Corpus callosum example (relative error) (c) Corpus callosum example (absolute error)

Figure 2: Analysis of the relative reconstruction error of the original and modified shape model on (a) synthetic and (b) on
the corpus callosum data (NRM 1). Please note that the error is scaled by the initial error, such that both plots start with unit
error. This is done to have a fair comparison, since the absolute error for the original model is always larger, compare (c).
Notice the better reconstruction ability of the modified model when more than the very first modes are used.

mixture of all modes, for instance calculated as the eigen-
vectors of the Λ1/2

∗ CbΛ
1/2
∗ matrix. Still, though, the es-

timated correlation coefficients will tend to be small, and
the first mode will normally have a larger component of
the biggest variance true mode than the others. An analyt-
ical analysis of distributions of projections and blending of
modes is beyond the scope of the current paper, but in Fig-
ure 1 the distribution of the estimated PCA projection on
the first and largest modes of the data model is illustrated
for different numbers of samples.

B.2. The Estimated Impact of Similarity Trans-
forms in the PCA Model

A similarity transformation ul can also be described by
a sum of linear deformation components. These can also
without adding constraints be represented similarly to (9)

ul = VlΛ
1/2
l bl , (15)

with parallel definitions of the quantities, only the subindex
l indicates that the model describes only similarity trans-
forms. Now our observed deformation field, u, resulting
from the nonlinear registration, can be modeled in approx-
imation as a sum of the true deformation fields u∗ and an
additional global similarity transform field ul as

u = ul + u∗ . (16)

We use the models of each composed field and as an ex-
pression for our observed field we get

u = VlΛ
1/2
l bl + V∗Λ

1/2
∗ b∗ = V Λ1/2b , (17)

where V , Λ and b denote the concatenation through matrix
operations of the sum into a combined model with the same
structure as the true deformation model and the similarity
transform deformation model. Now the important thing to

note is that since ul is only describing global deformation
changes, it is seen that all modes in Φl are also orthogonal
to all modes in Φ∗ (the nonlinear modes without similarity
transforms).

In summary this means that all modes in V are there-
fore orthogonal, and obviously b∗ and bl are also uncorre-
lated and as a consequence the triplet V , Λ and b satisfy
all assumptions from (9) and all the observations and con-
clusions from Section B.1 also apply for this model. Now
consider that similarity transforms are global and thus eas-
ily describe a big amount of variance, then we may expect
that the biggest mode in this model (in terms of explained
variance) is indeed a similarity transform mode, and we can
then expect that Figure 1 actually describes the distribution
of the biggest similarity transform mode - if we do not ex-
tract it before hand.

To conclude, we have learned that similarity transform
and nonlinear modes will be blended when only a finite
number of samples are available, and if the similarity trans-
form is significant we expect it to be distributed as depicted
in Figure 1.

C. Reconstruction Ability of the Model

In this section we show that not only the variance, but
also the relative reconstruction error of the modified SSMs
is lower.

The shape models built from minimal deformations have
a reduced variance compared to the original models - this
is equivalent to a larger reconstruction error, and shown in
Fig. 2c. We also investigate how much of the remaining
variance can be explained by using the model and to this
end we compute the relative reconstruction error. Here, the
reconstruction error is divided by the norm of original error,
in order to enable the comparison of relative performance of
original and modified model. Please note that without this



scaling, the original model would yield significantly larger
errors than the modified version.

The reconstruction ability is tested by averaging a se-
ries of 10 leave-10-out experiments. This is done for the
synthetic spoon example as well as for the corpus callosum
data set. It can be seen in Fig. 2 that the very first modes
of the original model describe more than the corresponding
modes of the modified model. When more than the very
first modes are included - which is the interesting case for
applications - the reduction of the relative error of the mod-
ified model is superior, compare Fig. 2.

Please also note that for the simple synthetic example
which was generated from two modes, the relative recon-
struction error is reduced to zero by the modified model by
using the first two modes, in contrast to the original model,
compare Fig. 2a.
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