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ABSTRACT

Medical image segmentation is a challenging task and al-
gorithms often struggle with the high variability of inhomo-
geneous clinical data, demanding different parameter settings
or resulting in weak segmentation accuracy across different
inputs. Assessing the uncertainty in the resulting segmenta-
tion therefore becomes crucial for both communicating with
the end-user and calculating further metrics of interest based
on it, for example, in tumor volumetry.

In this paper, we quantify segmentation uncertainties in
a energy minimisation method where computing probabilis-
tic segmentations is non-trivial. We follow recently proposed
work on random perturbation models that enables us to sam-
ple segmentations efficiently by repeatedly perturbing the en-
ergy function of the conditional random field (CRF) followed
by maximum a posteriori (MAP) inference. We conduct exper-
iments on brain tumor segmentation, with both voxel and su-
pervoxel perturbations, and demonstrate the benefits of prob-
abilistic segmentations by means of precision-recall curves
and uncertainties in tumor volumetry along time.

Index Terms— Random MAP perturbations, conditional
random fields, uncertainty quantification, medical image seg-
mentation

1. INTRODUCTION

Medical image segmentation is a well-studied field involv-
ing the delineation of cells, tissues, organs and pathological
structures. The major difficulties in this field are the inherent
ill-posed nature of the segmentation task as well as the high
variability of the data observed across subjects (due to tis-
sue heterogeneities), across data acquisitions (due to imaging
artifacts) and across medical sites (due to different scanning
protocols). Therefore, segmentation algorithms often have to
make decisions in the presence of uncertainty. However, val-
idation usually only relies on the hard segmentations gener-
ated by the algorithm, and little prior work has been done to
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Fig. 1. Left: Gumbel samples perturb the unary potentials in
between graph nodes i and label terminals T (tumor) and ¬T
(non-tumor). Right: range of Gumbel samples compared to
the non-perturbed unary potentials.

estimate and report the uncertainty of the results. In this pa-
per, we want to emphasize that uncertainty in medical image
segmentation is a valuable concept and can play a critical role
in the evaluation and validation of an algorithm, as well as
in clinical practice, where uncertainty can provide useful in-
formation in several applications such as disease diagnosis,
therapy guidance and radiotherapy planning.

The conventional method to assess segmentation uncer-
tainty is by using probabilistic segmentation models. In the
past years, graphical models have become very popular, as
they allow to incorporate spatial, temporal and inter-image
coherence. However, they make it difficult to go beyond
hard segmentation. Traditionally, Markov chain Monte Carlo
(MCMC) methods are used for sampling purposes. These
methods are computationally expensive, suffer from burn-in
periods and lack scalability. Therefore, sampling directly
over the entire voxel grid is to be avoided, and instead, one
would rather sample from parametric representations as in [1]
or use blockwise updates as in [2]. Alternatively, [3] pro-
posed to use min-marginal energies to quantify voxel-specific
uncertainties, but it becomes expensive for volumetric voxel
grids. In [4] and [5], the principle of random MAP perturba-
tions is introduced. These perturbations allow sampling from
the Gibbs distribution, which is inherently defined in CRF
models or equivalent energy minimization approaches.

In this work, we extend a typical framework for brain tu-
mor segmentation [6], which is composed of a probabilistic



local classification scheme and a CRF model, with random
MAP perturbations in order to sample brain tumor segmen-
tations. With this approach, we are able to go beyond the
typical hard segmentation, ie. the MAP solution, and quantify
the uncertainty of the segmentation without additional model
assumptions. To our knowledge, we are the first to employ
this theoretical framework to obtain uncertainties in medical
image segmentation.

2. METHODS

In the following, we briefly review the background on CRFs
and the recent work on perturbation models.

The presented work is an extension to the framework
of [6]. Starting from a CRF that simultaneously segments
brain tumors visible in several standard MR modalities such
as T, Tc and FLAIR, we make use of the perturbation model
to quantify the uncertainties in the segmentations.

2.1. CRFs and perturbation models

The CRF is defined over a graph G = (V, E) with vertices
i ∈ V for each voxel and edges (i, j) ∈ E between related
vertices. In the particular model that we employ, edges will
be introduced for all neighbouring voxels and between the
corresponding voxels in all modalities. A variable vector y
describes the assigned labels for all voxels. The energy func-
tion E(y) of the CRF is then defined over the graph G as:

E(y) =
∑
i∈V

φi (yi) +
∑

(i,j)∈E

φij (yi, yj) , (1)

where φi (yi) and φij (yi, yj) are the unary and pairwise
potentials, respectively. It is modelled such that favourable
states of y yield low energies. For many practically relevant
cases, the energy function can be minimized (approximately)
with efficient optimizers such as graph-cut algorithms [7].
For this study, we use the same potential functions as in [6]
and the graph-cut algorithm of [8]. However, the perturba-
tion approach is not restricted to this particular choice of
potentials.

It is important to notice that the CRF implicitely defines a
probability distribution over the segmentations y in terms of
a Gibbs distribution:

P (y) =
1

Z
exp

(
− E(y)

)
, (2)

where Z =
∑

y∈Y exp (−E(y)) is the partition function that
ensures that the distribution sums to 1. This gives us directly
a way of quantifying the uncertainty in our segmentation by
computing the marginal distributions. Unfortunately, calcu-
lating these marginals is intractable in loopy graphs [9] and
sampling with MCMC approaches is computationally expen-
sive. To this end, recent work of Papandreou and Yuille [5]
has shown that the Gibbs distribution can be approximated by

perturbing its energy function with Gumbel noise and solving
for its MAP state repeatedly (See Sect. 2.1.3). This allows us
to leverage powerful solvers for sampling segmentations from
the CRF and thereby approximating the marginal distribution
for all voxels.

Next, we elaborate on two particular ways to perturb the
energy function that we investigate in this work.

2.1.1. Voxel-specific Gumbel perturbations

Originally, the authors of [5] have proven that samples drawn
from the perturbation model coincide in the limit case with the
Gibbs distribution if the noise γ is drawn IDD from a Gum-
bel distribution with zero mean for the full state table of y.
While it is not feasible to do this in practice – the full state
table has exponentially many entries – several studies [4, 5]
have empirically shown that applying low-order perturbations
of Gumbel noise yields sufficient results. Our first approach
is therefore to perturb each of the unary potentials of the CRF
with a sample drawn from the zero-mean Gumbel distribu-
tion, as illustrated in Fig. 1. For this case, we can write down
the whole perturbation as:

γ(y) =
∑
i∈V

∑
k∈{T,¬T}

γki 1(yi = k) , (3)

where 1(.) is the indicator function and γki are samples of the
Gumbel distribution with zero mean.

2.1.2. Context-sensitive Gumbel perturbations

Inspired by the Swendsen-Wang cluster-specific updates [2],
we explore perturbations on a supervoxel scale in order to de-
tect context-sensitive uncertainties. We parcel the voxel grid
into supervoxels (of ≈ 1ml) using MonoSLIC [10] and draw
perturbations γ from the Gumbel distribution for each super-
voxel, resulting in identical perturbations for the unary poten-
tials of all voxels within the same supervoxel. We note that
doing so violates the assumptions of the original proof in [5]
and the resulting segmentation samples do not follow the orig-
inal Gibbs distribution of the CRF anymore. Instead, we can
interpret it as an additional, context-sensitive correlation prior
on the supervoxel grid that is added to the original CRF.

2.1.3. Sampling with perturbation models

Having defined both CRF and the type of perturbation, we can
draw samples y of segmentations with the following proce-
dure:

1. Draw random perturbations γ(y) as described in
Sect. 2.1.1 or 2.1.2.

2. Draw a new sample ŷ by computing the MAP state of
the perturbed CRF:

ŷ = argmin
y∈Y

E(y) + γ(y) . (4)



The two steps are repeated until the desired amount of sam-
ples has been created to approximate the marginal distribu-
tions (also called soft segmentation in our setting). Other than
MCMC methods, we do not have to throw away initial samples
as there is no burn-in period.

3. EXPERIMENTS AND RESULTS

We conducted experiments on 15 patient-specific datasets,
each dataset consisting of 3 time points, and each time point
containing 3 standard MR modalities (T, Tc and FLAIR) as
illustrated in Fig. 2. In all Tc and FLAIR volumes, indicating
active tumor core and whole tumor similar to the BRATS stan-
dards [11], 3-dimensional ground truth annotations have been
acquired by a clinical expert using a interactive segmentation
tool (SmartBrush, by Brainlab).

Note that this dataset poses a complicated segmentation
task. The data contains pre- and post-operative scans depict-
ing resection cavities, internal bleedings and scar tissue.

The datasets are preprocessed by intra-subject registra-
tions, skull extraction and isotropic resampling. We calcu-
lated initial brain tumor regions using a generative model as
in [12]. Inference is calculated on all modalities at once, as
in [6], but time points are processed individually. Using the
perturbation models, we sampled 100 segmentations for each
time point for each patient.

3.1. Quantitative evaluation

Based on the marginal distributions computed by the voxel-
specific perturbation model, we calculated precision-recall
curves for each segmentation task. Figure 3 illustrates the
confidence bands of the mean precision-recall curve for all
Tc and FLAIR segmentation tasks (ground truth was not
available for T), together with the confidence intervals of
precision and recall scores for the mean MAP solution of
all segmentation tasks. The mean area under curve (AUC) is
equal to 71.9% for Tc and 77.9% for FLAIR. For the soft seg-
mentations acquired by the supervoxel-specific perturbation
model, the mean AUC is equal to 71.6% for Tc and 70.1%
for FLAIR, indicating an overall decrease in segmentation
accuracy, especially in FLAIR.

3.2. Qualitative evaluation

Soft segmentation maps resulting from the voxel-specific
perturbation model are illustrated in Fig. 2 for one patient-
specific dataset. Figure 4 further illustrates the benefit of soft
segmentation maps for a few isolated volumes.

Furthermore, we extended the voxel-specific segmenta-
tion uncertainties towards volumetric uncertainties. Figure 6
illustrates Tc and FLAIR segmentations (from two different
patients) over 3 time points, together with the tumor volume-
try uncertainties. The Tc segmentations show a low variation

Fig. 6. Uncertainty in brain tumor volumetry. Left: Tc tu-
mor segmentations depicting similar volumes for time point 1
and 2, but different levels of uncertainty. Right: FLAIR tumor
segmentations with high volumetric uncertainties along time.

in volumes across samples for the first time point (where a
very clear active tumor rim is visible), while the second time
point shows quite a high variation (where the tumor was re-
sected and false positives are present in scar tissue and ves-
sels). The third time point depicts a very clear decrease in
active tumor core volume. The FLAIR segmentations show
quite high volumetric uncertainties along time, which might
be related to the smooth tumor boundaries.

Soft segmentations resulting from supervoxel-specific
perturbations are illustrated in Fig. 5. They generally depict
larger areas of uncertainty (lower and upper row in Fig. 5)
and, in some cases, reflect the underlying structure of the
input data better (middle row in Fig. 5).

4. DISCUSSION AND CONCLUSION

We have demonstrated the benefits of probabilistic segmen-
tations in a CRF framework for brain tumor segmentation.
Recent work on perturbation models was shown to be well-
suited for obtaining samples of segmentations from the CRF
model. It introduces minimal overhead and can be applied to
virtually all segmentation approaches that rely on graphical
models and energy minimization schemes.
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