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Abstract— The tracking algorithm presented in this paper
is based on minimizing the sum-of-squared-difference be-
tween a given template and the current image. Theoretically,
amongst all standard minimization algorithms, the Newton
method has the highest local convergence rate since it is
based on a second-order Taylor series of the sum-of-squared-
differences. However, the Newton method is time consuming
since it needs the computation of the Hessian. In addition,
if the Hessian is not positive definite, convergence problems
can occur. That is why several methods use an approximation
of the Hessian. The price to pay is the loss of the high
convergence rate. The aim of this paper is to propose a
tracking algorithm based on a second-order minimization
method which does not need to compute the Hessian.

I. INTRODUCTION

Visual tracking has many important applications and,
in particular, it is the core of a vision-based control
system in robotics [1]. When considering real-time robotic
applications, the main requirements of a tracking algorithm
are efficiency, accuracy and robustness. In this paper, we
focus mainly on efficiency and accuracy of visual tracking
methods. Visual tracking methods can be classified into
two main groups. The first group is composed of methods
that track local features such as line segments, edges or
contours across the sequence [2]-[4]. These techniques are
sensitive to feature detection and cannot be applied to com-
plex images that do not contain special sets of features to
track. The second group is composed of methods that make
only use of image intensity information. These methods
estimate the movement, the deformation or the illumination
parameters of a reference template between two frames by
minimizing an error measure based on image brightness.
Many approaches have been proposed to find the rela-
tionship between the measured error and the parameters
variation. Some methods learn this relationship in an off-
line processing stage: difference decomposition [5] [6],
active blobs [7], active appearance models [8]. Although
these methods solve the problem, they can not be used in
some real-time robotic applications where the learning step
can not be processed on-line. For example, consider a robot
moving in an unknown environment that needs to track
instantaneously an object suddenly appearing in its field of
view. Alternatively, there are methods that minimize the
sum-of-squared-differences (SSD) between the reference
template and the current image using parametric models
[9]-[12]. Many minimization algorithms could be used to
estimate the transformation parameters. Theoretically, the
Newton method has the highest local convergence rate
since it is based on a second-order Taylor series of the SSD.
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However, the Hessian computation in the Newton method
is time consuming. In addition, if the Hessian is not positive
definite, convergence problems can occur. In this paper,
we propose to use an efficient second-order minimization
method (ESM) [13] to solve the problem. The ESM method
has a high convergence rate like the Newton method, but
the ESM does not need to compute the Hessian. Theoretical
analysis and comparative simulations with other tracking
approaches show that the method has a higher convergence
rate than other minimization techniques. Consequently, the
ESM algorithm tracks with higher inter-frame movements.

Il. NOTATIONS AND DEFINITIONS

Let I be a (nx m) image template, which can be
considered as a matrix. Let p = (u,v) be the (2x1) vector
containing the coordinates of a pixel: (u,v) € {1,2,...,n} x
{1,2,...,m}. Thus, 1(p) is the intensity of the pixel p.
Let w(x) be an image transformation operator (e.g. a
translation, an affine or a projective transformation): p —
w(x)(p). The p parameters of the transformation w(x) are
in the vector x € RP. Let o be a binary operation such that
(RP,0) is a transformation group and the map w is a group
action. Let e be the identity element of the transformation
group. We have the following properties:

« W(e) is the identity map i.e. Vp € R?

w(e)(p) =p @)

« the composition of actions corresponds to the action

of the composition i.e Vp € R?, W¥x,, X, € RP
W(Xp)(W(Xp)(P)) = W(X10X,)(P) (2

« the inverse of an action corresponds to the action of
the inverse i.e Vx € RP

(W(x)) t=w(x ) )

Let g = nm be the total nhumber of pixels in the image I,
and consider the (gqx1) vector s(x) obtained by rearranging
the entries of the image matrix | after warping with w(x):

S(x) = (HW(X)(p1)), 1 (W(X)(P2)), -, 1 (W(X)(Pg)))  (4)
where vke {1,2,...,a}, p, € {1,2,....,n} x {1,2,...,m}. We
will note J(x) the (g x p) Jacobian matrix:

~ 0s(x)
) = Ox
and H,(x) the k-th (px p) Hessian matrix:
9%s, (x
H 0= T3 e 1.2..0)

Note that there exist q Hessian matrices, one per pixel.
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I1l. THEORETICAL BACKGROUND

Suppose we have selected a nx m template which can
be attached to an object in a reference image. Suppose
that, without loss of generality, the template has been
transformed into itself by the identity map w(e). Then
s(e) is the (gx1) vector containing the intensities of the
template. Suppose that the current image of the same object
can be obtained by warping the template with a given
motion model (e.g. a projective transformation). Let x¢ be
the vector containing the unknown current transformation
parameters. The current image can be reshaped into the
(gx1) vector s(xc). The goal of template-based tracking
algorithms is to find Ax such that s(AxoXc) coincides with
the given template image s(€). The optimal Ax is Ax = xg 2.
The vector Ax can be estimated by minimizing the function
f(AX) which is the SSD between s(e) and s(AxoXc). Let
S, be the k-th entry of vector s, the function f is:

1

M=a

f(Ax):%
K=1

The minimization of this non-linear function is done itera-
tively. At each iteration, we estimate the state update Ax by
finding the minimum of the cost function. The necessary
condition for finding the minimum of the cost function is:

of(Ax)
PN =0 ®)

This is a non-linear equation. We can linearize it by
approximating the derivative of f about Ax = e as follows:

of(ax) -t T
a9 +Ax'S 6)
where, after setting As= s(Xc) — s(e) we have:
AL
g - ﬁAX Avce _‘J (XC)AS
9?f(AX) T d
S = IR |y J' (Xe)I(Xc) +kZlHk(XC)ASK

where As, is the k-th entry of vector As. The standard
Newton minimization method solves equation (5) using the
approximation (6) as follows: Ax = —S~1g. The Newton
method has a quadratic convergence in a neighborhood
of e. If the function f is convex quadratic, then we can
estimate Ax = xg* in only one iteration since the approxi-
mation in equation (6) becomes an equality. If the function
f is not convex quadratic, convergence problems may
occur if the Hessian is not positive definite. To overcome
convergence problems, several methods approximate the
Hessian S with a positive definite matrix S. For example:

S=al
S=J71J
S=J"J+adiag(d"d)

Steepest Descent
Gauss-Newton
Levenberg-Marquandt

Approximating the Hessian has the advantage of reducing
the computation cost. However, the approximated Hessian

(S(Bxoxc) — 5, (€))%= 5l (s(Axoxc) —s(e)|?

must be updated at each iteration. In order to further reduce
computation, we can use the following function:

- q
fle) = 5 3 (800 ~(5e)* = 5 58%) ~stxo)

Similarly to the function f, in this case the Newton
minimization method computes Ax = —S~1g, where:

~ T
- 0f(&x) T
g = ET =-J'(e)As
Ax=e
R 10159 ) I d
S = IR =-J (e).](e)—kZlHk(e)Ask
Ax—e

This function permits to compute once for all the matrices
J and H, since they are estimated in e. The price to pay
is a reduction of the convergence neighborhood.

IV. A DIFFERENT SECOND-ORDER APPROXIMATION

The Newton minimization method performs a second-
order approximation of the cost function by using its Hes-
sian matrix. In this paper, we use the efficient second order
approximation proposed in [13]. Consider the second-order
Taylor series of the vector function s(x) about Xc and then
evaluated at e

s(e) ~ s(Xc) +I(Xc)AX + %M (X¢, AX)AX @)

where M (x¢, AX) is a (g x p) matrix that depends on Ax and
on the g Hessian matrices of s(x) evaluated at x¢. Using
the first order series of the matrix J(x) about X and then
evaluated at e, we obtain:

J(e) = J(Xc) + M (X¢, AX) (8)
Plugging equation (8) in equation (7), we obtain:
1
s(e) ~ s(Xc) + 5 (J(e) +I(Xc))Ax 9)
The equation:

As~ — % (3(8) + I (xc)) X (10)

is a second order approximation of As for small Ax.
Without computing the Hessian, we obtain an efficient
second-order approximation of As (i.e. only using first
order derivatives). Thus, the efficient second-order mini-
mization (ESM) proposed in [13] can be used to improve
template-based visual tracking. Similarly to [10] or [12],
the Jacobian J(e) is constant and can be precomputed while
similarly to [9], J(Xc) is updated depending on Xxc. Let
us suppose for the moment that J(xc) can be computed
or approximated. The displacement can be obtained by
computing the pseudo-inverse of the mean of the Jacobians:

AX =~ —2(J(e) +I(xc)) T As (11)

If s(x) is quadratic in x, then the equation (10) is not
an approximation any more. Thus, we can estimate the
true parameters of the warping in only one iteration. If
the vector function s(x) is not quadratic, we can expect
an improvement over the standard Newton second-order
minimization method since we do not need the Hessian of
the cost function to be definite positive in order to converge.
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V. ADVANTAGES OF THE ESM ALGORITHM

The main advantage of having a second order approxi-
mation of the parameter displacement is the high conver-
gence rate. Another advantage is the avoidance of local
minima close to the global one (i.e. when the second-order
approximation is valid). We show now these advantages
with the help of two simple examples.

A. High convergence rate

Consider a (4x1) vector function s(x) quadratic in a
(2x1) parameter vector x. The simulation is repeated 4
times with different starting points: xc € {(£1.5,£1.5)}.
Suppose we can measure the constant Jacobian J(e) and
the varying Jacobian J(Xc). The results for 6 different
minimization methods are given in Figure 1. The contours
represent isolines of the SSD (i.e. the cost function has
the same value for each point of the contour) while the red
lines represent the paths for each starting point. Obviously,
the ideal path (i.e. the shortest one) would be a straight line
from x. to e. Figure 1(a) shows that the varying Steepest
Descent method moves always in a direction perpendicular
to the isolines. For this reason, it has a slow convergence
rate and cannot reach the minimum following a straight
line. The paths for the constant Steepest Descent method
are even longer (see the path lengths in Figure 1(b)). The
constant (Figure 1(d)) and the varying (Figure 1(c)) Gauss-
Newton methods performs better than the constant and the

(b) constant Steepest Descent

(c) varying Gauss Newton (d) constant Gauss Newton

P s = —— e

3 05 0 05 1 i 2

(f) ESM

— _‘..___‘.,.s"_‘-.d.....o.ﬁ._ sl 2 2
(e) Newton
Comparing the behavior of 6 different minimization methods.

Fig. 1.

varying Steepest Descent methods respectively. In fact, in
the constant and the varying Gauss-Newton methods a
rough approximation of the Hessian is used. Il conditioned
and indefinite Hessian matrix causes the oscillations of the
Newton method in Figure 1(e). Finally, the ESM method
gives the best solution since the paths in Figure 1(f) are
straight lines. Indeed, when the function s(x) is exactly
quadratic we can correctly estimate the displacement in
only one step and thus the correct descent direction re-
gardless of the shape of the isolines.

B. Avoiding local minima

In the second simulation, we choose a different quadratic
function s(x) such that the corresponding SSD cost func-
tion has a local minimum very close to the global min-
imum. The Newton method and methods with varying
Jacobian fall into the local minimum when the starting
point is close to it (see Figures 2(a), 2(c) and 2(g)). In
that case, methods with constant Jacobian can eventually
diverge (see Figures 2(b) and 2(d)). Indeed, the constant
Jacobian approximation is valid only in a neighborhood
of the true solution. On the other hand, the ESM method
follows the shortest path (see Figure 2(f)). Thus, if s(x) is
locally quadratic the ESM method is able to avoid local
minima. Obviously, if the local minimum is far from the
true minimum the second-order approximation is not valid
any more.

2T E T R T

(f) ESM

S T s T e
(e) Newton
Comparing the behavior of 6 different minimization methods.

Fig. 2.
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VI. APPLICATION TO HOMOGRAPHIC MOTION MODEL

In this section, we show how the ESM algorithm can be
applied when the motion model is a homography. Obvi-
ously, it is also possible to add priors on the warping pa-
rameters by considering special cases of the homographic
model such as the affine model or simple translations.

A. Homography war ping
Let us suppose we want to track a planar object. When
the object moves in the 3D space, the image transformation

of the object is a homography. We need p = 8 parameters
to define a homography. The homography is modeled by a

(3x3) matrix H(x):
hyy
hy1(X) (X)) hys(x)

H(x) = {
ha1 (X) hgy(X) (%)
where X = (X, X,,...,Xg) IS the vector containing the ho-

mography parameters. A transformed image point can be
written as follows:

(X§ hyo(X) h13(X)]

hy1 (X)u+hp,(X) v+ hy5(x)

/ h h h
=90 = | R OV 0
Py (X) U+ hgy (X) v+ hgs(X)

B. Homography parameterization

Choosing a homography parameterization consists in
choosing the functions h;;(x) where (i,j) € {1,2,3} x
{1,2,3}. There exists many parameterizations of the ho-
mography since it is defined up to a scale factor. Thus, a
constraint on the matrix H must be added. Usually, H is
chosen in P(2) (the projective group) by setting ha5(x) = 1.
However, it is possible for big displacements of the camera
to find x such that hy5(x) = 0. For this reason, we prefer
to choose H such that its determinant is equal to 1. This
choice is well justified since det(H) = 0 corresponds to
the singular case when the observed plane passes through
the optical center of the camera. In this singular case, all
the points of the plane project into a line. The additional
constraint is then H € SL(3) (the Special Linear group
of dimension 3). SL(3) is the (3 x 3) group of matrices
that have the determinant equal to 1. Let sl(3) be the
Lie algebra associated to this group. The matrices in this
algebra have their trace equal to 0. The parameterization of
H is done as follows. Let G; (Vi€ {1, 2,...8}) be a basis
of d(3) (i.e. linear independent constant matrices such that
trace(G;) = 0). The matrix A(x) can be written as linear
combination of the matrices G;:

8

AX) =Y xG;

iZ\ 11
The matrix A(x) is a matrix in sl (3) and H(x) = exp(A(x)).
For this parameterization, we have H(e) =1, H(x; oX,) =

H(x;)H(x,) and H1(x) = H(x"1) = H(—x). Note that,
we have x~1 = —x. We will show in the following section
that this parameterization simplifies the computation of the
Jacobian and is necessary to obtain the best performances
from the ESM algorithm.

C. Computing the Jacobians

In order to be able to use equation (11), we need to
compute J(x) for x = e and x = Xc. Using equation (4),
the k-th row r, (x) of the matrix J(x) can be written as

follows:
al(w(y)(py))

re(x) = dy

y=X
where p, are the image coordinates of the k-th pixel Vk €
{1,2,...,q}. Using the properties (1, 2, 3) of w(x), we have:

(12)

Al (w(x)(w(x"toy)(p
() = IO 0y)(p)))
oy y=x
which can be written as the following product:
_ 9l(w(x)(p)) ow(x)(p)| d(xtoy)
Ne(x) =
ap P=Py ox x=e ay

(13)

The (1x2) vector M‘ contains the gradient of

% fp=p
the image (after being warped With w(x)) computed at
Py Thus, if x = e then %‘2(”))‘ corresponds to the

P=pPy

gradient computed at p, in the reference image while if
X = Xc¢ then %’5)@))‘ corresponds to the gradient

computed at p, in the currént warped image. It is very
important to notice that the gradient can be computed
without explicitly knowing the current parameters X¢. The

(2xp) Jacobian W does not depend on x and can

be precomputed as in [10T6‘? [12]. Finally, the third (pxp)
Jacobian generally depends on x. However, thanks to the
parameterization of the homography using Lie Algebra, we
have the following simplification formula:

0(X71 o y)

dy X=X

y=X

(14)

This formula shows that we do not need to know x to

compute the Jacobian. It will be used in the next section for
computing the second-order approximation. This explains
why the homography parameterization using Lie algebra is
a key point of our algorithm. Another parameterization can
imply a Jacobian matrix depending on x. As a consequence,
in that case, the Jacobian can only be approximated.

D. Computing the second-order approximation

Consider the second order approximation in equa-
tion (10), the i-th entry of the vector As can be written:

As ~ —%rk(e)Ax — %rk(xC)Ax
Using equation (13) we have:
@< | W)
ap p=p, ox ‘e
From equation (14), since Ax = Xz = —x. we obtain:
o) ax = AWOED | WEIRY|
op p=p, ox ‘e
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Then the second-order approximation can be written:

1 (dlp) dl (w(Xc)(p)) ow(X)(py)
A%“‘z( op o pk> :

op ox
This equation shows that we can compute the second-order
approximation in a very efficient way. Rearranging the
rows of the Jacobians into a single matrix J(e) + J(Xc)
we can compute the state update as in equation (11).

e

VIl. EXPERIMENTAL RESULTS

In order to have a ground truth, the ESM algorithm has
been tested by warping a static image. In real conditions
(with noise and light changes), it has been tested on a
moving planar object and for tracking the back of a car.

A. Satic object

We compare the ESM method with the constant
Gauss Newton method (CGN) proposed in [12] and
with the varying Gauss Newton method (VGN) pro-
posed in [11]. We have used the Matlab soft-
ware available on the web page of Simon Baker at
the Robotics Institute of the Carnegie Mellon Uni-
versity  (http://www.ri.cmu.edu/people/baker_simon.html).
Thus, the performance of the algorithms have been com-
pared with the same experimental setup. We use the well
known Lena image shown in Figure 3(a). The (100x100)
template illustrated in Figure 3(b) has been selected in the
center of the image. The computational complexity of the
ESM algorithm is equivalent to the VGN method which is
higher than the CGN method. In order to have the same
execution time per iteration, we can use a smaller subset
(25 %) of the template for computing the Jacobians and the
estimated displacement. The template is warped 1000 times
using different random homographies. Similarly to [12], the
homography is computed by adding a Gaussian noise to the
coordinates of the 4 corners of the template. The standard
deviation o of the Gaussian noise is increased from 1 to 10.
Figure 3(c) plots the frequencies of convergence (% over
1000 tests). As o grows, the frequency of convergence
of the CGN and the VGN methods decay quicker than
the frequency of convergence of the ESM method. At the
final o = 10, the frequency of convergence of the CGN
and the VGN methods are only 30% while the frequency
of convergence of the ESM method is 70%. Figure 3(e)
shows the average convergence rate (over the converged
tests) of the algorithms for ¢ = 10. The initial SSD is the
same for the three algorithms but the speed of convergence
of the ESM method is much higher. This means that we
can perform real-time tracking at higher rates. Since our
objective is to track objects in real-time, it is very important
to measure the residuals after each minimization. Indeed,
since the number of iterations is fixed by the frame rate, the
error will cumulate. Figure 3(f) plots the average residual
over all the tests for which the algorithms did not diverge
(we consider that the algorithm diverges when the final
SSD is bigger than the initial SSD). Obviously the SSD
increases with the amplitude of the initial displacement.
However, the ESM method performs much better than the

AX

CGN method and the VGN method. Finally, we have tested
the robustness of the algorithms to sampling. Figure 3(d)
plots the frequency of convergence for o = 10 against the
sampling rate r between the size of the subset used in
the algorithm and the size of the template e.g. for 1/1 we
use all the template while for 1/10 we use 1 % of the
template (1 pixel used every 10 pixels of the image per
line and per column). The ESM algorithm is more robust
to sampling. For r = 1/10, the frequency of convergence
of the ESM method is almost the same as the two other
methods without sampling. Thus, we can obtain the same
frequency of convergence with a faster algorithm.

(a) Image (b) Template

0
-~ CGN ---CGN
10f VGN 10 VGN
— ESM — ESM

% 2 3 4 5 6 7 8 9 10

1 12 13 s 15 Us 17 Us 1S 1o

(c) convergence frequency (d) robustness to sampling

5 -~ CoN
VGN 05 VGN

— ESM Sl — ESM e

0 2 4 6 8 10 12 14 00 2 a 6 8 10

(e) convergence rate
Fig. 3.

(f) average residuals
Comparison between ESM and standard methods.

B. Moving object

The second-order tracking has been tested on sequences
with moving planar objects. Five images have been ex-
tracted from each sequence and they are shown in the first
row of Figure 4 and Figure 5. In the first experiment,
the template to track is a (150x150) window shown in
Figure 4(f). The red windows in the first row of Figure 4
are warped back and shown in the second row of Fig-
ure 4. Despite illumination changes and image noise, the
warped windows are very close to the reference template
proving that the tracking is accurately performed. During
the sequence, a generic projective motion and several light
variations have been observed. For example, Figures 4(b)
and 4(c) shows translations and rotation around the Z and
X axis respectively, while Figure 4(d) and 4(e) shows a
rotation around the ¥ and varying illumination (the image
becomes darker, the image becomes lighter). In the second
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(9) Window 2

(h) Window 3

(i) Window 4

Fig. 4. Tracking a template on a planar object.

(a) Image 1 (b) Image 2

o

(9) Window 2
Fig. 5.

(f) Window 1

experiment, we track a (43x43) template on the back of a
car with a camera mounted on another car (see Figure 5(a)
to (e)). Again, the tracking is accurately performed (see
Figure 5(f) to (j)) in spite of the template changes due to
people movement that we can see through the window of
the car.

VIIl. CONCLUSION

In this paper, we have proposed a real-time algorithm for
tracking planar targets. We perform an efficient second-
order approximation of the error using only first order
derivatives (the ESM algorithm). This avoids the compu-
tation of the Hessian of the cost function. At the same
time, the second order approximation allows the tracking
algorithm to achieve a high convergence rate. This is
very important if we want to track objects in real-time.
Despite the ESM algorithm deals only with changes of
the template due to the 3D motion of the plane, it can be
extended in order to take into account illumination changes
or transformed into a robust algorithm in order to take into
account partial occlusions.

(h) Window 3
Tracking a template on the back of a car.

[10]

[11]
[12]

[13]
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(i) Window 4 (i) Window 5
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