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Abstract—We present a novel method for joint reconstruction
of both image and motion in positron-emission-tomography
(PET). Most of nowadays motion compensation methods consist
of two completely separated steps: (i) motion estimation and (ii)
image estimation. A major drawback of these methods lies in
the motion estimation step, since it is completely based on the
usually noisy individually reconstructed gates. As we show in
a simulation study, a joint reconstruction approach alleviates
this drawback and results in both visually and quantitatively
better image quality. We attribute these results to the fact that
for motion estimation always the currently best available image
estimate is used and vice versa. Additionally, results for dual
respiratory and cardiac gated patient data are presented.

I. INTRODUCTION

Most of nowadays motion compensation methods for PET

consist of two steps: they first estimate the motion, and then,

based on this motion estimate, they estimate the image (refer

to [1]–[3], just to name a few). The first step is usually

acomplished by an image registration/optical flow technique,

applied to the individually reconstructed gates. The second

step can be done by transforming these individually recon-

structed gates according to the previously gathered motion

and then taking the sum. It is also possible to perform a 4D

ML-EM reconstruction based on the motion estimate, such as

proposed in [4].

A major problem of methods that separate motion estima-

tion from image estimation is, that the motion estimate is

becoming more and more inaccuarate with increasing noise.

In order to overcome these problems, joint estimation methods

that maximize a 4D liklihood expression have been proposed

[5], [6].

Our approach is based on a very similar objective func-

tion as [6], however, our optimization scheme is different.

In contrast to [6], we observe a clear advantage for joint

reconstruction methods with respect to reconstruction quality.

[5] uses a different cost function that incorporates several

image estimates, while our cost function is based on just one

image estimate.
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II. METHODS

A. Joint Reconstruction

In the following, we develop a cost functional

J (f,ϕ) = D(f,ϕ) + α S(ϕ) (1)

which depends on both image f and motion ϕ and is subject

to minimization.
1) Dissimilarity Term: The number of counts g(a, t) that

is measured for a line-of-response (LOR) a in gate t underlies

a Poisson distribution:

P (g(a, t)|f,ϕ) = e−ĝ(a,t) · ĝ(a, t)g(a,t)

g(a, t)!
(2)

f is the image function and ϕ(x, t) represents the defor-

mation field at gate t with respect to a virtual reconstruction

frame.

ĝ(a, t, f,ϕ) =
1
T

∫
H(a,x)f(ϕ(x, t)) dx (3)

is the expected measurement vector. H(a,x) is the system

model which contains the probability that the two annihilation

photons emitted at position x will be measured in LOR a.

The likelihood function for all measured events of a gate t
is

L(f,ϕ|g(a, t)) =
∏
a

P (g(a, t)|f,ϕ) . (4)

We seek to find a pair of image f and motion ϕ that maxi-

mizes the likelihood function for all gates. This maximization

is equivalent to minimizing − log(L(f,ϕ)), and we finally

arrive at

D(f,ϕ) =
∑
t,a

ĝ(a, t, f,ϕ) − g(a, t) log (ĝ(a, t, f,ϕ)) (5)

(the term
∑

t,a log(g(a, t)!) was omitted since it does not

affect the minimum).
2) Regularization: In order to prohibit extreme deforma-

tions we use a homogeneous diffusion regularization term

S(ϕ) =
∑

t

3∑
i=1

∫
‖∇xϕi(x, t)‖2 dx (6)

which is well known in the image registration community.

The regularization parameter α defines the smoothness of our

sought deformation function.
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B. Optimization

We optimize J by calculating the variational gradients with

respect to f and ϕ and performing an alternating update

scheme.

C. Evaluation

We test our algorithm for both simulated and real data.

1) Simulation: We generate 32 frames using the XCAT

phantom [7]. One complete respiratory cycle of a length of

five seconds is simulated, without any cardiac motion. The

extent of diaphragm motion is set to two centimeters. These

32 frames are then redistributed to eight gates. In doing so

we make sure that motion is simulated also within a gate. For

each gate, a volume of 50 × 50 × 50 voxels containing the

heart is cropped.

The expected number of counts for each LOR is calcu-

lated by projecting each gate to measurement space. The

measurements are finally generated from the expected number

of counts by a Poisson random generator. This way we take

into account the acquisition time and activity. Ten levels of

statistical noise, representing very long to extremely short

acquisition times, were simulated.

Since we want to focus on image degradations induced

by motion, we did not make use of external simulation

packages which would include effects like scattering, random

coincidences etc. We simulate a Siemens Biograph Sensation

16 PET/CT scanner and use Scheins’s algorithm to generate

the system matrix [8].

2) Real Data: The patient data was taken from a previ-

ously accomplished cardiac examination which measured the

myocardial metabolism in order to assess tissue viability. It

was acquired with a Siemens Biograph Sensation 16 PET/CT

scanner. The injected dose of 18F-FDG was roughly 400 MBq.

The patient had to rest for 60 minutes before data acquisition

started. Both the respiratory and the ECG signal were recorded

and later used in order to divide the data into eight respiratory

gates by omitting the systolic phase and combining all diastolic

phases into one (since the diastolic phase is the longest cardiac

phase with minimal motion). As for the simulation, we also

use Scheins’s algorithm for calculating the system matrix.

3) Registration and Fusion of Reconstructed Frames
(RFRF): For comparison, we implemented two ambassadors

of RFRF methods which only differ in the image estimation

part.

a) Motion Estimation: Motion estimation consists of

individual reconstruction of each gate and its registration to

a reference gate (in our case the first gate). The registration

is done by minimizing the squared difference between the

reference and the template image. Homogeneous diffusion

regularization is applied to the motion function in order to

encourage physically meaningful solutions.

b) Image Estimation: The first image estimation method

(RFRF 1) consists of a summation of the transformed gates,

similar as in [3]. In the second method (RFRF 2), the image

is completely re-reconstructed based on the whole data (refer

to [9], [10] for details).

4) Comparison: For the simulated data, we compare our

joint reconstruction approach (JR) to an ML-EM reconstruc-

tion (30 iterations) for motion-contaminated data (MC), an

ML-EM reconstruction (30 iterations) for the first gate (FG),

the two RFRF approaches and an ML-EM reconstruction (30
iterations) for motion-free data (MF).

As a quantitative measure for evaluation we use the correla-

tion coefficient CC(x, y) = xTy
‖x‖‖y‖ between the reconstructed

image of the respective reconstruction approach (represented

by a vector x) and the original image (represented by a vector

y). Both x and y are shifted such that their mean value is

zero.
For real data, JR is compared to MC, FG and RFRF 1. Note

that since no ground truth data is available, no quantitative

comparison could be performed.

III. RESULTS AND DISCUSSION

A. Simulation
Table I summarizes the results for different noise levels. Fig-

ure 2 shows visually selected transverse, coronal and sagittal

slices for three levels of noise. The level of noise is indicated

by the number of annihilation events - the less events, the

higher the level of noise.
JR performs better or equal than MC, FG and RFRF in

all cases. Especially for moderate and high noise levels the

difference is striking.
Comparing JR to MF, it is surprising that JR has an even

higher correlation coefficient for high noise levels. Consulting

Figure 2c reveals that this observation may be attributed to

the fact that the joint reconstruction is less noisy than the

reconstruction for motion-free data.
Interestingly, RFRF 1 works better than MC only for low

and moderate noise levels. An explication may be that fusion

by summation in image space is a permissible approximation

only for low-noise scenarios. Also, we expected RFRF 2 to

perform better than RFRF 1 not only for low levels of noise. It

seems that RFRF 2 is very sensitive to the previously estimated

motion function.

B. Real Data
Figure 1 compares our joint reconstruction approach (fourth

column) to MF, FG and RFRF 1. It clearly shows the better de-

fined myocardial walls, indicating the potential of our method

to achieve a notable reduction of the motion induced blur.
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Fig. 1: Transverse, coronal and sagittal slices for real patient

data (from left to right): MC, FG, RFRF 1 and JR.

(a) Moderate noise: 4.50e+07 annihilation events

(b) High noise: 5.60e+06 annihilation events

(c) Extremely high noise: 7.00e+05 annihilation events

Fig. 2: Selected transverse, coronal and sagittal slices for

different levels of noise and different reconstruction scenarios

for the simulated data (from left to right): MC, FG, RFRF 1,

RFRF 2, JR and MF. For comparison, the original image is

shown in the last column.
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