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Abstract

Scene coordinate regression has become an essential part of current camera relocal-
ization methods. Different versions, such as regression forests and deep learning meth-
ods, have been successfully applied to estimate the corresponding camera pose given a
single input image. In this work, we propose to regress the scene coordinates pixel-wise
for a given RGB image by using deep learning. Compared to the recent methods, which
usually employ RANSAC to obtain a robust pose estimate from the established point cor-
respondences, we propose to regress confidences of these correspondences, which allows
us to immediately discard erroneous predictions and improve the initial pose estimates.
Finally, the resulting confidences can be used to score initial pose hypothesis and aid in
pose refinement, offering a generalized solution to solve this task.

1 Introduction

Camera re-localization from a single input image is an important topic for many computer
vision applications such as SLAM [15], augmented reality and navigation [12]. Due to rapid
camera motion or occlusions, tracking can be lost, making re-localization methods an es-
sential component of such applications. Early methods focus on keyframe [7] or descriptor
matching by using SIFT or ORB [20] features to obtain point correspondences from which
the camera pose could be inferred. However, those methods usually do not perform well
under occlusion or in poorly textured environments. On the other side, machine learning
methods have recently shown great capabilities in estimating camera poses from a single
image. In particular, regression forests have been employed for a robust pixel-to-scene coor-
dinate prediction. Correspondence samples are then used to obtain multiple pose hypotheses,
and a robust pose estimate is found using RANSAC [5, 8, 23, 25].

Recently, deep learning methods have emerged, mainly focusing on RGB images as input
and directly regressing the camera pose, thus offering fast camera pose estimates [10, 11].
Most of these methods, however, cannot achieve an accuracy similar to the scene coordinate
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regression approaches. This leads to the assumption that the intermediate step of regressing
scene coordinates plays a crucial role in estimating the camera pose for deep learning algo-
rithms and the generalization of those methods. Moreover, RANSAC [6] usually plays a vital
role in achieving good accuracy in any of the methods focusing on camera relocalization via
scene coordinate regression.

In this paper, we introduce a method, which as a first step, densely regresses pixel-wise
scene coordinates given an input RGB image using deep learning. In addition, we propose a
new form of regularization, that smoothes the regressed coordinates and which can be applied
to further improve the regressed coordinates. Thus, a detailed analysis of scene coordinate
regression and the influence of different loss functions on the quality of the regressed scene
coordinates is conducted. Our main contribution is seen in the second step, where the con-
fidences of the obtained image to scene coordinate correspondences are regressed, based on
which erroneous predictions can immediately be discarded, which in turn results in a more
robust initial pose hypothesis. In addition, the resulting confidence predictions can be used
to optimize the estimated camera poses in a refinement step similar to previous works [4].
In contrast to these methods, our approach offers a more general solution by not restricting
itself in terms of the optimization function and thresholding, which are typically used to
define the inliers and outliers in RANSAC optimizations.

2 Related Work

There exists a vast amount of research focusing on the topic of camera pose estimation. The
most related to our work can be divided into two categories: correspondence learning and
direct regression. The first focuses on descriptor matching to obtain point correspondences
from which the camera pose can be inferred, by using either analytical solutions or learning
methods. The second performs direct pose regression by using deep learning methods to
obtain a pose estimate from a single input image.

Correspondence Learning. Well-known methods working on the topic of camera re-
localization have used random forests for correspondence prediction. Here, the forest is
trained to predict pixel to 3D coordinate correspondences, from which the camera pose can
then be inferred and iteratively refined in a pre-emptive RANSAC optimization [23]. Several
extensions and improvements of the method have been proposed, increasing its performance
and robustness [5, 8, 25].

On the other hand, due to the recent success of this method, various related methods
have used deep learning approaches. Inspired by the approach of [23], Brachmann et al.
[4] use two convolutional neural networks (CNNs) to predict the pose for an RGB image;
the first CNN is used to predict point correspondences and is linked to a second CNN by
a differentiable version of RANSAC, they name DSAC. Notably, reinforcement learning is
used to obtain a probabilistic selection to enable end-to-end learning of the framework.

Recently, Schmidt et al. [21] automatically find correpondences in RGB-D images by
relying on learned feature representations for correspondence estimation using a 3D model
of the scene. A fully-convolutional neural network is trained on a contrastive loss to produce
pixel-wise descriptors. Here, pixels corresponding to the same model coordinate are mapped
together whereas the remaining pixels have dissimilar feature descriptors. Despite the lack of
complete guarantee that the descriptors learned from one video can be mapped to the features
of another video capturing the same scene, the method showed robustness and generalization.
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Instead of relying on feature representations for point correspondences, Zamir et al. [30]
investigate a generic feature representation based on the viewpoint itself, which could be
used to retrieve a pose estimate. A siamese network is trained on a multi-task loss including
the pose and a matching function. Image patches are extracted and matched according to
their poses, and the network is trained to match patches with similar viewpoints. Addition-
ally, it is shown that the resulting models and features generalize well to novel tasks, such
as, scene layout or surface normal estimation.

Capturing both geometric and semantic information, Schoneberger et al. [22] propose
to learn 3D descriptors and include the task of 3D semantic scene completion into a varia-
tional encoder-decoder network. By incorporating semantic information, robust descriptors
are learned and shown to successfully aid in visual localization tasks even under strong view-
point and illumination changes. Such additional information has been shown to work well in
similar scenarios, such as in localization, when a semantic map of the environment is given
as prior information [14, 27].

Direct Regression. Lately, direct regression approaches have been emerging, which use
deep learning methods to regress camera poses from a single image. Mostly CNNs are used
in this context to estimate the camera poses [9, 10, 11, 26]. Therefore, Kendall et al. [11]
use a CNN, called PoseNet, to directly predict the six degrees of freedom for camera pose
estimation from RGB images. They parameterize rotation by quaternions, which leads to
a total of seven parameters to regress for rotation and translation. Although Kendall et al.
[11] achieve reasonable performance for several indoor scenes, this method still shows a sig-
nificant inaccuracy as compared with the random forest approaches. Therefore, we assume
that predicting an intermediate representation such as point correspondences is important for
inferring the final pose. However, this method relies only on RGB images, without the need
for depth information, which makes it easily applicable in indoor and outdoor settings.

Walch et al. [26] extend this approach and connect the last feature vector of the neural
network to four LSTM units before concatenating the results and feeding this feature vector
to the final regression layer. As in [11], a pre-trained CNN used for classification is adapted
and fine-tuned to enable the regression of the camera pose. By connecting LSTMs and thus
correlating the spatial information, the receptive field of each pixel is enlarged substantially,
improving the final pose estimation.

In [10], the authors of [11] extend their method by introducing novel loss functions,
which further reduces the gap in accuracy compared to the state-of-the-art methods. Further,
they show that the re-projection error could be used to additionally fine-tune the model and
optimize the regression prediction when the depth information is given.

As a first direct regression approach that achieves comparable accuracy with regard to
the scene coordinate regression methods, [24] proposes a multi-task learning framework.
By combining the global and relative pose regression between the image pairs, the authors
present a framework for localization and odometry, which shows great improvements in
accuracy.

In comparison, our approach is most related to scene coordinate regression methods us-
ing deep learning [4]. Scene coordinates are densely regressed as opposed to patch-based
regression proposed in the state-of-the art methods. Moreover, correspondence confidences
are predicted to remove outliers and boost the accuracy of the initial pose hypothesis. Ad-
ditionally, the resulting confidences can be directly used for hypothesis scoring and pose
refinement.
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Figure 1: Outline of our re-localization framework. Scene coordinates are densely regressed
for each pixel in the input RGB image. Confidences are predicted for point correspondences
and finally used to compute the camera pose estimates.

3 Methodology

Given an input RGB image I € R""*3 of a scene, where & and w are the image height
and width, respectively, our goal is to estimate the corresponding camera pose, given by its
orientation R € R¥*3 and position t € R3. The camera pose describes the mapping between
the camera and the scene coordinates x and X € R3 as

X = RX +1. N

The relation between the 3D camera coordinates x € R? and the image pixels p, € R?
depends on the camera’s focal length f, f, and the optical center c,, ¢y, and is defined as

p)[ - d X’ d
with x = (x,y,d)” being a point in the camera coordinate frame, given by its coordinates
x,y and its depth value d. In case the camera pose is unknown, it can be retrieved given
N, number of correspondences either, if depth information is available, using the Kabsch
algorithm from the 3D-3D correspondences between x and X or using the PnP algorithm
[13] from the 2D-3D correspondences between the image points p, and X.

For this aim, our proposed framework consists of three steps: (1) scene coordinate re-
gression, in which we densely predict scene coordinates, and in this context, add a novel
regularization, (2) confidence prediction, in which we aim to find accurate correspondences
in our coordinate predictions, and (3) pose estimation, in which we employ the aforemen-
tioned algorithms to compute the camera pose estimate for the most confident predictions
Npesr- An overview of our framework is given in Figure 1.

+¢)7, @

3.1 Scene Coordinate Regression

Coordinate regression. As the first step, our aim is to model the function ¢ : I — X, obtain-
ing the predicted scene coordinates X, as X = ¢(I; »), where ® are the model parameters.
Therefore, we compute the ground truth scene coordinates X to train a model and regress the
scene coordinates of every pixel, obtaining an R"***3 output map. For this purpose, we use
the Tukey’s Biweight loss function [2] to regress the 3D coordinates, given as

1 ,
Lcoords = r Zp(ri,s) , with p(ri,s) = {

Wl 1s=1

=

(1= (1= (%)), if i <e
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where r; ; = X; s — )A(,;,S is the residual, § = 3 is the number of coordinates to regress and p(.)
is Tukey’s Biweight function. In Tukey’s Biweight function the choice of the tuning con-
stant ¢ plays a crucial role, which is proposed to be chosen according to the median absolute
deviation over the residuals assuming a Gaussian distribution. Nevertheless, we propose to
choose the parameter ¢ depending on the spatial extent of the current scene, where, after
empirical evaluation, we found half of the scenes diameter given in meters to provide better
results. In case of missing depth values and thus missing ground truth scene coordinates, we
omit these pixels during training in order not to negatively influence the network.

Coordinate smoothing. The graph Laplacian regularization, has been successfully applied
for image denoising on image patches [17]; therefore, we consider the scene coordinates in
a given neighborhood. Minimizing the graph Laplacian regularizer enables us to smooth the
image patches with respect to the given graph. Similarly, we consider the scene coordinates
as vertices and compute weights according to the depth value at the corresponding pixel

e ldi—djl @
Wij = “di—
Yiekpie 144l
where, given a pixel position i, we compute weights w;; for each index j in a given neighbor-
hood K. In this case, d; represent the depth value at index i. Finally, we obtain the additional

smoothing term in our loss function

Ny
['sm()oth :ZZWlJHXt_Xj”Z» (5)
i jeK

where X corresponds to the predicted scene coordinates at a given pixel index. This term
loosely pushes the surrounding points closer together, given the fact that their depth values
are similar; otherwise, a larger difference between points is accepted.

Overall, we train the model using our loss function, described as £ = L yoras + Lsmooth-

3.2 Confidence Prediction

The regressed coordinates can be used to obtain a pose estimate. However, these correspon-
dences usually include a large amount of erroneous correspondences, which is most often
solved using RANSAC.

Inspired by [29], which classifies point correspondences between image pairs, we train a neu-
ral network to estimate the probabilities of 2D-3D correspondence. Instead of solving this as
a classification problem, we consider this task as a regression problem. Therefore, we use the
model described in the previous section to create probabilities for each scene coordinate pre-
diction and construct the training set S fidzence = {(pﬁ1 X, O1)s - (pXNk , )A(Nk7 On, )}, where

6 = e’(S‘HX"’X" ll2), Here, s is used as a scale, so that accurate coordinates are given a high
probability. In this step, the objective is, therefore, to compute the function @ : (pg, X) — 0,
described by the model parameters Q, so that § = ®((pg,X); Q). To this end, we feed Ny
points containing the image pixel and the predicted scene coordinates to our model. As an
output, we obtain a probability for each point according to whether it is likely to be a good
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correspondence or not. As a loss function, we use the /, loss to train this model,

Ny, "
Econfidence = Z || 6 — 5i||2' ©)
i

The pose predictions can then easily be obtained by sampling the most confident point
correspondences, while removing the initial erroneous predictions right away.

3.3 Pose Estimation and Refinement

The initial pose hypothesis is refined as a post-processing step. Following previous works
[4], h, pose hypotheses are sampled using N number of point correspondences for each.
Out of these correspondences, only the 10% points with highest confidence are kept. How-
ever, even though we are able to greatly improve the quality of the point correspondences
used to compute pose estimates with this step, the initial randomly selected points might still
be highly inaccurate, leading to erroneous predictions included in the confidence sampled
subset. To overcome this problem, only one hypothesis out of the 4, is chosen, by scoring
each hypothesis using the mean confidence over the probabilities of the correspondences
used to compute the pose estimate. Then, the best hypothesis is refined by repeatedly sam-
pling Nj randomly selected points and re-running the PnP or Kabsch algorithm, including
the additional 10% most confident correspondences in this point set.

3.4 Implementation Details

For scene coordinate regression, U-Net is used as the network architecture, as it could easily
be used to regress correspondence maps and has been shown to train well on few input
images [19]. Four convolutional layers with pooling layers and dropout applied after each,
and four up-sampling layers are used, which gives a final feature map of size h x w x 8. By
applying a last convolutional layer, we obtain the final correspondence map of size & x w x 3.

For confidence prediction, we adapt PointNet [18] to our specific input and output re-
quirements. As our aim is to predict confidences for a subset of point correspondences, we
mimic the input for solving the PnP and keeping our final objective in mind feed randomly
selected points to PointNet, which has been shown to work well on unstructured data such as
point clouds. This way, the network learns to be independent of the order in which the points
are fed and could still be used in scenarios where a dense representation of point correspon-
dences is not given. For the final regression layer, following [29], we first apply a hyperbolic
tangent followed by a ReLu activation, so the network can easily predict low confidence for
highly inaccurate points. Mostly for evaluation purposes, s is computed, so that the inlier
points have a lower bound probability of 0.75, resulting in s = 2.8768.

We set Ny = 500 out of which only the most confident points are used to estimate a
camera pose, resulting in only Np.;; = 50 points. For pose refinement, we follow the param-
eter settings of [4] and sample &, = 256 initial hypotheses and refine the best one for eight
iterations on the additional most confident points out of the randomly sampled points.

Both networks are trained separately for 800 epochs with batch size of 20 using RMSprop
Optimizer with an initial learning rate of 5-10~%. All experiments were conducted on a
Linux-based system with 64-GB RAM and 8-GB NVIDIA GeForce GTX 1080 graphics
card and implemented using TensorFlow [1].
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Figure 2: Normalized histograms of regressed scene coordinate errors used to compute pose
estimates on the 7-Scenes. The points are either randomly sampled or, the most confident
points out of the samples are used.

4 Experiments

To evaluate our method, we define baseline models, which are described in Section 4.2, and
use the following metrics. For this purpose, inliers and outliers are defined as || X — XHZ <
tintiers With i, = 0.1 m being a common threshold chosen to define inliers [4, 23, 25]. Every
inlier point is therefore counted as a true positive in our evaluations. For pose estimation we
compute the median rotation, the translation error and the pose accuracy, where a pose is
considered correct if the rotation and translation error are below 5° and 5 ¢m, respectively.

4.1 Dataset

Our method is evaluated on the publicly available 7-Scenes dataset from Microsoft, which
consists of seven indoor scenes with varying volumes ranging from 1 to 18 m*. RGB and
depth images of each scene and their corresponding ground truth camera poses are available.
For each scene images in the range of 1K to 7K are provided, including very difficult frames
due to motion blur, reflecting surfaces and repeating structures, for example, in case of the
Stairs scene. The images were captured using a Kinect RGB-D sensor and the ground truth
poses obtained using KinectFusion. Following the state-of-the-art, we use the training and
test sets specified for this dataset. No augmentation as proposed in [16, 28] was performed
and our models were trained individually for each scene.

4.2 Baseline Models

First, we evaluate each individual component of our model and create the baseline models
for comparison. To start with, the first step of our pipeline, the scene coordinate regression is
evaluated. To this aim, a model is trained on scene coordinate regression by using different
loss functions. Mainly we compare between /| and the L,,,4s loss as described in section
3.1. In this case, a pose estimate is computed by randomly sampling N; number of points.
Results are given for a single pose estimate. Further, we abbreviate these model as P;; and
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Figure 3: a) ROC comparison between regression and classification for the training images
of the Heads and Stairs scenes, and example images showing b) input RGB, c¢) corresponding
pixel-wise scene coordinate error and d) confidence map predicted by our model.

Prukey- Next, to evaluate the scene coordinate regression quality, regularization is added in
the form of the introduced smoothness term Ly, 0, corresponding to model Pyyy0017-

Further, and more importantly, the second step of our pipeline, the confidence prediction
is analyzed. The predicted scene coordinates and associated image points are used to train a
model and regress the confidence of each correspondence. For pose estimation, in this case,
only the most confident correspondences out of the initial randomly sampled Ny points are
kept. We abbreviate this model as Py figence-

4.3 Evaluation of Baseline Models

Each of our models is evaluated, comparing the error between the regressed and ground
truth scene coordinates, and the pose error. We compare our models trained on the scene
coordinate regression and additionally regularizing the model using the smoothness term.
Here, we found a slight improvement in terms of the regressed coordinates as well the pose
estimates comparing our models with and without additional regularization.

Using our proposed confidence prediction, Figure 2 shows that the point errors of the
points used to compute a pose estimate significantly decrease, successfully eliminating most
of the erroneous predictions and greatly boosting the pose estimation accuracy. As a re-
sult, the estimated poses also improve significantly, as seen in Table 1. Specifically, the
translation error greatly decreases. It should be noted, that only the most confident point cor-
respondences are used to compute a pose estimate for this model. As a result, more accurate
poses are obtained using a much smaller number of points. Additionally, the percentage of
inliers in the sampled points used to compute initial pose hypothesis significantly increases.
For the evaluation of our proposed confidence prediction to RANSAC, we sampled &, pose
hypotheses and keep the pose hypothesis with the highest inlier score as a final result. Due
to the very low amount of inliers, it is difficult to apply RANSAC and obtain satisfactory re-
sults without pose refinement or additional confidence prediction. Furthermore, we analyze
the quality of our model’s coordinate regression and confidence prediction, where example
error and probability maps are shown in Figure 3. In our case, since we densely regress the
scene coordinates, high error values usually correspond to missing depth values and therefore
missing ground truth coordinates in the image. Although it seems difficult for the network to
accurately predict low confidences in regions with unusually large error, in regions of inlier
predictions, the model is able to predict corresponding high confidence.
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Table 1: Median rotation and translation error on the Heads scene for our baseline models.
Results are computed using only one pose hypothesis without any further refinement.

Model h/i Pl] Ptukey Psmaoth Pconfidence
Kabseh | 180°.029m  877°,0.15m  6.67°, 0.12m  5.77°, 0.07m
SN 956 14.7°,025m  6.23°,0.11m 5.88°, 0.09m  4.86°, 0.06m
pup 1 503°,044m  41.3°,044m  443° 043m  10.6°, 0.18m
256 33.7°,046m  25.9°, 043m  26.3°,037m  5.09°, 0.10m
Inliers 1 5.1% 7.8% 11.9% 50.7%

4.4 Evaluation of Confidence Prediction

To assess the quality of regressing correspondence probabilities, a model is trained on simple
classification, where a point correspondence could be labeled either as an inlier or an outlier
depending on the threshold #;,;;.-. The model is trained using cross-entropy loss. As a second
step, we train our proposed model, regressing probabilities in the range of d € [0, 1] instead
and plot the resulting ROC curves as shown in Figure 3a. As a result, we assess that the
performance of regression in this case is more or less equal to classification. However, we
do not restrict the model to a specific threshold chosen for the inlier definition, which needs
to be adapted for each scene depending on the quality of scene coordinate regression. In
comparison, a classification model trained on the challenging Stairs scene results in a drop
of relative rotation and translation error of 4.4% and 31.5%, respectively, because very few
inliers were available during training.

4.5 Comparison to the state-of-the art

Finally, we report the results of our framework using a combination of scene coordinate
regression and confidence prediction, described as Peop figence- We compare our results to the
current state-of-the art methods, namely PoseNet [10], which directly regresses the camera
poses from the RGB input images and refines the trained models by optimizing on the re-
projection error. The median rotation and translation errors evaluated on the 7-Scenes dataset
can be found in Table 2, where we report the results obtained using PnP (Oursyp_3p) as well
as, given depth information is available, using Kabsch algorithm (Ourszp_3p). Our model
does not depend in any way on the algorithm used to compute pose predictions; therefore,
we can easily interchange these algorithms without the need to train additional models.

In most cases, we found a significant improvement in pose accuracy compared to [10]
and adaptations of this method [26]. A recent method, namely VLocNet [24], has achieved
comparable results to our method, however using direct pose regression. By evaluating the
layers up until weights are shared between global pose regression and the odometry stream,
they are finally able to achieve an overall median rotation and translation error of 3.1°,4.2 cm
on the 7-Scenes dataset.

In addition, we compare to recent works on scene coordinate regression, [4]. Although,
there has been a very recent version of this work [3], we compare to the earlier version, since
its framework is more similar to our approach, keeping the hypothesis scoring CNN in mind.
With the exception of the challenging Stairs scene, the state-of-the art method shows slightly
better accuracy in terms of RGB pose estimation considering each scene individually. On
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Table 2: Median rotation and translation error on the 7-Scenes dataset. Percentages are given
for poses below 5° and Scm threshold.

RGB information RGB-D information
Scene Volume | PoseNet PoseNet VLocNet VLocNet DSAC [4] Oursap-_3p Oursip-3p SCoRe [23]
LSTM [26]  2017[10]  STL[24] MTL [24]
Chess 6m’ 5.7°,24cm  4.8°,13cm  1.7°,4cm  1.7°,3cm 1.2°, 2cm 1.3°, 3cm (83.0%) 1.2°, 3cm (85.7%) 92.6%
Fire 2.5m3 | 11.9°,34cm  11.3°,27em  5.3°,4cm = 4.9°,4em  1.5°, 4cm 2.9°, 6cm (42.4%) | 2.7° Scm (48.8%) 82.9%
Heads 1m3 13.7°, 21cm 13°,17cm  6.6°,5cm  5.0°,5cm  2.7°,3cm 3.2°,4em (59.6%) | 3.1°, 3cm (60.1%) 49.4%

Office 7.5m3 | 8.0°,30em  5.5° 19cm  2.0°,4cm  1.5°,3cm  1.6°,4em  2.1°,60m (42.5%) | 2.0°, 5em (49.2%)  74.9%
Pumpkin | 5m? 7.0°,33cm 4.7°,26cm  2.3°,4cm 1.9°,4cm 2.0°,5ecm 2.9°, dem (62.2%) | 1.3°, 3cm (66.6%) 73.7%
Kitchen 18m3 8.8°,37cm  5.3°,23cm  2.3° 4cm  1.7°,3cm  2.0°, 5cm 2.7°, 5¢m (58.2%) 1.3°, 4cm (66.4%) 71.8%
Stairs 7.5m% | 13.7°,40cm  12.4°,35cm  6.5°, 10cm  5.0°,7em 33.1°,1.17m  6.3°, 13cm (9.9%) | 6.1°, 13cm (11.6%) 27.8%

Average ‘ 9.8°,31.3cm 8.1°,22.9cm 3.8°,5cm  3.1°,4cm  6.3°,20cm  3.1°,5.8cm (51.1%) ‘ 2.5°,5.2¢m (55.5%) 67.6%

average our method shows good performance compared to the state-of-the art.

Although our confidence prediction significantly improves the results, the initial scene
coordinate regression still seems erroneous, which will be further explored in future work
considering optimizations in handling missing depth and thus ground truth scene coordinates
as well. Given that the depth information is available, improvements of the accuracy using
RGB-D information can easily be obtained since neither the models nor the pose refinement
rely on these algorithms. The results including RGB-D information can be seen in Table
2, for which we give a comparison to the state-of-the art scene coordinate regression forest
approach [23]. Also, since we only depend on the most confident points, our results were
obtained using a smaller number of points. Further, RANSAC based optimization, as ap-
plied in most state-of-the art methods, could be easily applied to obtain more accurate pose
estimates. For evaluation and comparison to current RGB methods, we keep the parameter
settings for pose refinement as proposed in [4].

In terms of computational time, our method is evaluated on an Intel Core i7 4.2 GHz
CPU. The only part, which is running on GPU is the evaluation of the networks. To solve
the PnP, we use OpenCV’s implementation of [13]. Our framework runs in 1.06 s, most
of which is due to hypothesis sampling (0.8 s) and refinement (0.26 s). In comparison,
DSAC, implemented in C++, reports a run-time of approximately 1.5 s, whereas our method,
implemented in Python, already performs well.

5 Conclusion

In this work, we present a framework for dense scene coordinate regression in the context of
camera re-localization using a single RGB image as the input. When the depth information
is available for obtaining the camera coordinates, the corresponding scene coordinates could
be regressed and used to obtain a camera pose estimate. We incorporate this information
into the network and analyze how the scene coordinate regression can be further optimized
using a smoothing term in the loss function. In addition and more importantly, we predict
confidences for the resulting image point to scene coordinate correspondences, from which
the camera pose can be inferred, thus eliminating most of the outliers in advance and greatly
improving the accuracy of the estimated camera poses. As a final step, the resulting confi-
dences can be used to refine the initial pose estimates, which further improves the accuracy
of our method.
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