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Abstract Purpose In-bed motion monitoring has become of great interest
for a variety of clinical applications. Image-based approaches could be seen
as a natural non-intrusive approach for this purpose, however video devices
require special challenging settings for a clinical environment. We propose to
estimate the patient’s posture from pressure sensors’data mapped to images.
Methods We introduce a deep learning method to retrieve human poses from
pressure sensors data. In addition, we present a second approach that is based
on a hashing content-retrieval approach.
Results Our results show good performance with both presented methods even
in poses where the subject has minimal contact with the sensors. Moreover,
we show that deep learning approaches could be used in this medical appli-
cation despite of the limited amount of available training data. Our ConvNet
approach provides an overall posture even when the patient has less contact
with the mattress surface. In addition, we show that both methods could be
used in real-time patient monitoring.
Conclusions We have provided two methods to successfully perform real-time
in-bed patient pose estimation, which is robust to different size of patient
and activities. Furthermore, it can provide an overall posture even when the
patient has less contact with the mattress surface.
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1 Introduction

In today’s highly digitized health care workflows, in-bed patient motion mon-
itoring has become a crucial requirement for various aspects such as patient
positioning for precise treatment [22], disease and disorder diagnosis [1], de-
tection of bed-exit and fall events [14], and bedsore prevention [13]. The main
idea is to rapidly and accurately detect changes in patient position and pose
while lying in bed or on operating tables. This can be compared to a similar
challenge in in computer vision that aims at estimating human body poses
from images in various scenarios [5, 9, 19, 20, 26]. The main difference, how-
ever, is that humans in computer vision scenarios are generally captured in
an up-right position, whereas patients in clinical scenarios are mostly lying or
sitting. Nevertheless, many approaches related to computer vision challenges,
have been used as a non-intrusive way towards patient motion monitoring.
However, sensors like depth-sensors or video cameras require calibration or
specific lightning conditions and thus cannot be easily installed in a clini-
cal environment. To overcome these limitations, the trend goes towards using
pressure-sensing mattresses that produce image imprints of the human body.
Their main advantage is that they do not require the installation of additional
equipment inside the clinics. In the remainder of this section, we give a de-
tailed overview of all related approaches and introduce our main contribution
in regard to this state-of-the-art.

2 Related work

Automatic monitoring systems have generally relied on cameras that monitor
patients in two dimensions, typically reducing a scene to a flat image. In [3] ,
video images are employed to detect the 3D body pose as well [7, 15]. Depth
images have been used in [4] to detect the area of bed occupied for fall detection
using dense SIFT features. A combination of depth and video images have
been also employed to monitor patients by estimating human pose through a
ConvNet approach [1].

There has been only a few attempts to monitor patient movements on a
bed pressure mattress. An early idea presented by M. P. Toms [24], describes
the use of fluid filled cells between the patient and a support in order to
detect motion via pressure fluctuations. Alaziz et al. [2] suggest to use low-end
load cells placed under each bed leg, and classify 27 pre-defined movements
by analysing the computed forces. A similar approach has been validated by
Hoque et al. [14] replacing load cells with active RFID sensors equipped with
accelerometers. Both approaches are able to show promising results, but lack
high-speed algorithmic solutions in order to enable real-time processing.

A solution to this problem are machine learning approaches that have
also been introduced for bed monitoring. Kortelainen et al [17] use pressure
and video images for sleeping posture classification using a multiclass SVM.
Employing a powerful deep learning approach, Heydarzadeh et al. [13] yield
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close-to-real-time in-bed patient posture classification based on pressure data
collected from a commercially available force sensing array mat that is placed
between bed mattress and linen.

Despite short processing time of the classification step, the preprocessing
of pressure data involves tedious filtering which slows down the entire speed.

On the contrary, we aim at estimating the in-bed patient 3D pose in a wider
application scope. Harada et al. [12] propose to solve the general computer
vision pose estimation problem via a synthetic pressure distribution image
generated by a surface human mesh model.

Grimm et al.[11] estimate the body pose and orientation from synthetic
depth and pressure images by first detecting the body orientation heuristically
and later retrieving the pose by nearest neighbors.

ConvNet methods. Human pose estimation has been significantly advanced
with the use of deep neural networks. Relative simple deep models have re-
sulted in successfully regressing the body pose as set of values [6]. More re-
cently, heatmap regression [5, 19, 26] and more complex models [9, 20] have
improved the localization accuracy.

Hashing-based methods. Hashing has been used in the computer vision com-
munity for image retrieval in large scale databases where the task becomes
complex due to the high-dimensionality of the data [18]. This technique aims
at encoding the data into a different representation in order to enable a fast
query. In clinical applications, several works have employed hashing to large
medical database search [27] or in histopathological image analysis [28].

For pose estimation, hashing has been widely used for 3D object pose esti-
mation [16, 21]. However for human pose estimation, the literature is limited.
[23] employs locality-sensitive-hashing to retrieved articulated poses from a
large database of exemplars.

2.1 Contribution

In this paper, we present two simple yet effective methods to retrieve 3D
human poses from pressure mattress images. Compared to earlier approaches,
we create our pressure image from only a very small subset of pressure sensors
normally used within such setups, and show that efficient 3D pose retrieval is
still possible.

The first is a hashing-based method which is a content-retrieval approach
[8]. It searches a query pressure image in a training hash table and retrieves the
nearest neighbors 3D body poses, which are fused to obtain a final 3D pose.
The second method is a Convolutional Neural Network (ConvNet) approach
which learns to estimate a 3D human pose from a pressure image by regression.
In this work, we rely on a simple regressor from [6]. The reason is that we have
access to limited amount of training data in our problem and thus it is not
possible to adopt a heavy deep model.
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Fig. 1 Graphical model of the human body. The green circles represent the J=14 joints
and the black lines (S1-S13) are the body segments used to estimate orientation.

In our experiments we show that both methods perform well with some
potential towards activity generalization for the ConvNet-based approach. We
show that despite of the low resolution images represented by an array of
pressure sensors, it is possible to estimate in-bed patient poses for monitoring
purposes in real-time. Moreover, we show that even though large databases of
pressure images are not available, the ConvNet-based method is able to learn
very efficiently.

3 Materials and Methods

In this section, we explain the methods we use for 3D in-bed patient pose
estimation. Let x ∈ RR×C be a pressure image obtained from an R×C array
of pressure sensors uniformly distributed over the entire length and width of
a standard patient bed mattress. In our problem, R = 20 and C = 10 denote
the number of sensors per row and column respectively. Using information
encoded in x, we aim at estimating the correct 3D body pose y ∈ R3×J of
a single individual with J = 14 body joints. Every joint and orientation is
represented by a three-dimensional vector.
Given a multi-modal training dataset D = {(x,y)}Ni=1 comprising of N pres-
sure images xi and corresponding 3D joint positions yi, we present two meth-
ods to estimate 3D human pose. At first, we use hashing to learn functions to
map our pressure database into a binary representation to perform a content-
based pose retrieval. In an extended approach, we incorporate ConvNets as
regressor to learn a mapping between a pressure image and a 3D pose. In this
section, we explain both methods we use for pose estimation.
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3.1 Hashing-based pose estimation

We create a look-up table containing theN pressure images H = {x1,x2, ...,xN} ∈
RN×P . Here, each pressure image xi is represented as a zero-centered vector
of length P = R× C .

In order to dissolve ambiguities introduced by different person sizes in the
database, we standardize all 3D poses yi by matching a template skeleton with
J body joints and J−1 segments or limbs to them 4. Therefore, we define the
pelvis as center of coordinates and compute new standardized joint positions
ysi and limb orientations yai for each database entry.

The proposed framework of our image based pose-retrieval method is dis-
played in Fig. 2. In theory, the structure enables us to directly measure the
similarity between a query pressure image and the database to find the near-
est neighbors. However this is computational expensive given the size of the
database. Therefore, we employ a hashing method to learn a set of hashing
functions and map the pressure images into binary codes of L = 128 bits and
create a hash table (offline hashing table construction). This mapping allows
for a more efficient search, especially for real-time pose estimation. Given a
query, we perform a K-nearest neighbors (K-nn) search and average the re-
trieved poses avoiding outlier poses and adding temporal correlation (online
query search).

Offline hashing table construction

We use the unsupervised hashing method Iterative Quantization (ITQ) [10] to
learn a similarity-preserving binary code representation of our look-up table
H. Given the predefined code length L, the hash look-up table is B̂ ∈ RN×L.

Our first aim is to yield a reduction of data dimensionality via the concept
of Principal Component Analysis. Here, a suitable matrix W is obtained by
taking the top L eigenvectors of the covariance matrix HTH. Given the pro-
jected data matrix V=HW, there exists a rotation matrix R ∈ RL×L that is
applied to V such that it minimizes the quantization loss function:

Q (B,R) = ‖B−VR‖2F , (1)

where B ∈ {−1, 1}N×L represents the vertex of hypercube {−1, 1}L. The

reduced hash look-up table is then defined by B̂ = HWR.

Online query

Given an input query pressure image xq, a hash code bq is obtained by applying
W and R. Later, a K-nn search is performed in the reduced hash look-up
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Fig. 2 Hashing-based pipeline for patient pose estimation from pressure images. There are
two stages: an offline hashing table creation and an online query which takes as input a
pressure image and the output is the estimated pose.

table B̂ using Hamming distance. The 3D poses based on limb orientations
ya1..k corresponding to the K closest pressure images are retrieved.

In order to avoid corrupted or outlier poses, we discard all poses with

abs(yai −median(ya1..k))/MAD > 2.5.

Then, the average of the remaining retrieved limb orientation poses is com-
puted. In addition, to provide temporal smoothness between subsequent frames,
we extract a window of 2m+ 1 frames [t−m, t+m] to smooth the transition
and avoid corrupted static poses by employing the same strategy based on
MAD. The final pose estimated is given by ŷai . Using the skeleton template
we compute ŷsi .

3.2 ConvNets-based pose estimation

As an extension to our hashing based method, we propose to use ConvNets as
regressor to estimate a human pose from a pressure image.
Let φ be a function representing a ConvNet used as a regressor. Given the
training dataset D we aim at learning the parameters θ of φ, in order to map
an input pressure image x to a set of J = 14 3D joint positions y. Therefore,
the estimated output vector is given by ŷ = φ(x; θ)). The objective function
shown in Eq.2 represents the L2 loss between the predicted values and the
ground truth.

L(D,θ) =
1

2J

J∑
i=1

‖φθ(xi)− yi‖22. (2)

ConvNets employed as regressors, strongly depend on the detection of fea-
tures. Models such as AlexNet, VGGNet-16 or ResNet, have shown strong
results for classification tasks on natural images due to an efficient feature
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Fig. 3 ConvNet-based method for patient pose estimation from pressure images. The input
of the network a a pressure image and the output is the estimated pose. The ConvNet is
represented by a cascade of 7 layers.

extraction. However, these models are deep and require large databases just
like ImageNet (> 1 mio samples), in order to be able to learn the number
of parameters (> 4 mio). In this work, however, we deal with small images
(200 data points per image) and a limited amount of training data (∼ 60K
samples). This is why, we have opted for

the network model presented in [6]. The model consists on a cascade of
ConvNets trained to regress a set of 2D joint positions from RBG images. The
input images are already cropped according to the individual. We use the L2
loss for training. The results reported show robustness for convergence and
good accuracy performing better that state of the art methods.

The network has 5 convolutional layers followed by 2 fully connected layers.
The fully connected layers are presented as 1× 1 convolutional layer because
the operation is performed in the filters dimension (refer to Fig. 3). Following
a coarse-to-fine model, the first convolution layer has a 5 × 5 kernel and the
rest 3 × 3 kernels. Dropout is employed in the fourth convolutional layer to
prevent overfitting.

In order to completely match our intended aim, we have slightly modified
the network architecture given in [6] to regress 3 × J values from one layer
images. Therefore, the last layer number of filters is modified to 3 × J (see
Fig. 3).

4 Experiments

We have evaluated the proposed method with the multimodal database re-
ported from [8]. This database contains recordings of 6 subjects, 2 female and
4 male, performing 5 distinct activities on a bed for 1− 1.5 minutes each (see
Table 1). The modalities contained are pressure distribution images and 3D
ground-truth joint positions. According to [8], the first modality is obtained
from an array of pressure sensors placed under a foam mattress. For the second
modality, the patient uses a set of markers to obtain the ground-truth position
of each joint using a motion capture system.

We have performed evaluations of the two presented methods, the hashing-
based and the ConvNet-based method. As evaluation metric, we use mean
absolute error (MAE) between the ground-truth pose y and the estimated
pose ŷ where the 3D joint position error is in centimeters and limb orientation
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Activity Name Description
A1 Random horizontal

positions
Subject simulates sleeping positions.

A2 Fixed horizontal
positions

Subject changes horizontally from left, center and right position.

A3 Rotation of joints Keeping the trunk horizontal, subject rotates upper and lower
limb joints,and head.

A4 Body stretching Subject performs stretching positions not necessarily keeping the
horizontal position.

A5 Simulated Seizures Subject performs rapid twitiching movements simulating the
clonic phase of an epileptic seizure

Table 1 Description of the activities performed in the multimodal dataset reported in [8].

in degrees. In both cases, we compute the error along the S=J joints or S=J-1
limbs and the 3 coordinates (X, Y and Z) as shown in Equation 3.

MAE =
1

3S

S∑
i=1

3∑
c=1

|yic − ŷic |. (3)

We compare our two methods with cross-validation experiments per sub-
ject and per activity. Moreover, we have performed a comparison based on
orientation error per skeleton limb. In order to yield comparable results be-
tween both models, we have normalized the ConvNet output employing the
same template skeleton strategy used in hashing (See Section 3.1).

In all the ConvNet experiments, the network parameters are randomly
initialized. In addition, we have evaluated the use of a pre-trained network
in the ConvNet-based method and the feasibility of real-time application by
measuring the execution time of a query in both methods.

All evaluations have been conducted in Matlab 2017b on a 3.7GHz CPU
with 8 cores and 64GB RAM. For the ConvNet method, we took as baseline
the public implementation provided in [6] with MatConvNet 1.0-beta25 [25].
A Matlab implementation of the ITQ-hashing method has been provided by
the original authors [10].

4.1 Cross-validation experiments

We perform a leave-one-out cross-validation for each subject and each activity.
The subject cross-validations results are shown in Table 2. It is observed that
the ConvNet method performs better than the hashing method for all subjects.
In average, the improvement is 3.5cm in terms of joints position while the
orientation is also improved in 3 degrees in average. This shows that the deep
neural network dominates even this limited amount of training data. Moreover,
it is invariant to the size or weight of a subject.
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Subject Hashing ConvNet
Orientation(deg) Position(cm) Orientation(deg) Position(cm)

S1 24.22 13.38 21.28 9.53
S2 25.37 13.87 22.74 8.71
S3 22.34 10.58 16.86 7.01
S4 17.54 9.78 15.25 6.01
S5 20.28 9.76 18.54 7.49
S6 23.17 14.02 21.05 9.24

Table 2 Joint position and limb orientation mean absolute errors (MAE) using leave-one-
subject-out cross validation for hashing-based and ConvNet-based method.

Hashing ConvNet
Subject Orientation(deg) Position(cm) Orientation(deg) Position(cm)

A1 29.26 14.02 17.83 7.02
A2 27.95 13.87 19.85 8.48
A3 14.52 9.82 9.29 3.79
A4 33.55 21.95 21.19 10.68
A5 19.75 10.92 14.42 1.44

Table 3 Joint position and limb orientation mean absolute errors (MAE) using leave-one-
activity-out cross validation for hashing-based and ConvNet-based method.

In the activity cross-validation evaluation that is shown in Table 3, the
ConvNet method performs better as well. It can be observed that in activ-
ity A4, the error in the hashing method raises to 21.95cm in comparison to
10.68cm for the ConvNet method. This performance is expected given that
the hashing method is a content-retrieval search method and A4 is the only
activity which includes not horizontal positions. On the other hand, the low
errors between 3.5 and 8cm reported by ConvNet gives us the intuition that
it can generalize better to different activities, even when the person is not in
direct contact with the mattress.

4.2 Evaluation per limb

We have evaluated the performance of both methods with respect to the limbs.
Table 4 shows that the ConvNet method performs better in terms of 3D po-
sition and orientation. It can be observed that in most of the limbs the error
reduction obtained by the ConvNet method is considerable (∼5cm) except in
the legs. This correlates to the fact that the range of movement of the legs
during the activities recorded in the database is wider than the arms. In addi-
tion, the lowest errors reported are localized in the torso due to the low range
of motion of this limb in a in-bed natural posture. Regarding the head error,
it is a good example to show the importance of reporting errors not only in
position but also in orientation. In this case, even though the position error
seems low, the orientation error is the highest on the table. This high error is
as well expected given that the head has a expanded range of mobility and is
up to some extend independent form the rest of the body posture.
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Evaluation Head Torso Upper Lower Upper Lower Full
Method Mode Legs Legs Arms Arms Body
Hashing position(cm) 13.47 10.23 15.10 17.98 10.90 12.09 12.20

orientation(deg) 29.11 8.74 22.41 26.15 9.65 10.88 22.25
ConvNet position(cm) 8.78 4.94 10.70 15.35 5.94 7.27 8.00

orientation(deg) 28.25 9.82 23.46 26.98 11.24 12.00 19.29

Table 4 Joint position and limb orientation mean absolute errors(MAE) per limb for hash-
ing and ConvNet method. The skeleton template is divided in the seven limb groups shown
in the first row of the table. The last column reports the average of whole skeleton.

Subject wo. Pretrained w. Pretrained
S1 6.31 6.54
S2 6.84 7.58
S3 6.36 7.42
S4 5.97 5.79
S5 6.13 5.79
S6 9.20 9.26

Average 6.80 7.06

Table 5 Joint position mean absolute error(MAE) in cm for the ConvNet-based method
trained from scratch(wo. Pretrained) and trained using a pretrained model on LSP
dataset(w. Pretrained)

4.3 Evaluation based on a Pretrained Network

Deep learning approaches often rely on pre-trained models when the amount
of training data is limited. We adopt this idea for our problem as well. We
use a pre-trained model from [6] to initialize our model. However, please note
that the pre-trained model has been build from RGB image data . When using
the pre-trained model, we discard the first and last layer weights, which are
randomly initialized. Later when using our own database, we perform fine-
tuning. We use the same number of epochs(150) for both way of training.
Table 5 shows the results of our ConvNet trained from scratch and using the
pre-trained model.

It can be observed that the model using the pre-trained network performs
worse than the one trained from scratch. This is somehow expected given
that the network has been trained on a different modality. Furthermore, the
first layers of a deep network, in general, capture universal textural features
as curves and edges. Therefore, when we use a model trained on RBG images
which have rich context and textural features, it fails to find similar features in
a less rich domain as the pressure image. Moreover, using the 2D joint regressor
network to estimate a 3D values would tend to lose information regarding the
additional third dimension.
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4.4 Execution Time

Finally, we have evaluated the execution time of each model to examine
whether real-time execution is possible. This is an important requirement for
patient monitoring. We measure the execution time for both methods given a
new input pressure image. The execution time per query takes 5.9 ± 0.41ms for
the hashing. The inference time for the ConvNet is 3.41ms. Both approaches
are considered as real-time for our application.

5 Discussion and conclusions

In this paper, we have presented two simple yet effective methods that yield
to real-time 3D patient pose estimation from pressure sensor data. Our exper-
iments have revealed only a slight position error that has no severe influence
on the overall posture detection. As expected, best results have been obtained
when the subject is positioned flat (such as A1, A2, A5 in Fig 4). On the
other hand, poses where the subject has less contact with the surface (such as
A4) yield to the highest error (see Fig. 4). However, even in those cases, the
estimated pose does not significantly differ from the real patient posture (See
Fig. 4). Moreover, we have shown that the ConvNet performs better among
the two approaches. It generalizes not only to different patient size and weight,
but also to positions belonging to activities not complied in the training data.
This generalization capability is useful when dealing with patients of different
medical condition. Providing the pose estimation for bed-monitoring, in clini-
cal applications, has a great potential from classification of activities, posture
analysis. In addition, in our evaluations, we estimate the pose continuosly,
however it is in our interests to add a movement detection method. We plan
to explore this path in future work.
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