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Abstract. Surgical-phase recognition is important to many future ap-
plications in clinical care, from building context-aware operating rooms
to automatically providing feedback to surgeons in training. In this work,
we focus on learning-based phase recognition in laparoscopic gallbladder
removals (cholescystectomies). Using data from 15 sensors across 42 surg-
eries, we 1) compare performance using support vector machines, hidden
Markov models, and conditional random fields and 2) demonstrate that
it is possible to achieve 74% accuracy using only 8 rapidly-deployable
sensors.

1 Introduction

Being able to detect the current surgical workflow phase during an intervention
is a critical step for many applications, such as context-aware assistance systems,
automated triggering of peripheral actions, and prediction of upcoming surgical
steps. These features are often mentioned in conjunction with the concept of an
“operating room of the future” [6].

Analysis and modeling of surgical workflow has therefore been a field of
growing interest for the last few years. Several methods have been developed to
model and segment different levels of an intervention, from very detailed surgical
activities up to surgical phases and even full surgeries [12]. Various statistical
and machine learning approaches have been employed to that end, including
hidden Markov models [4], support vector machines [13,14], random forests [17],
and semantic rules [9]. Most methods rely on instrument data to be available,
but other approaches directly analyze the laparoscopic video, either to detect
the used instruments [1], or to directly recognize workflow information [8].

In this work, the primary objective is to predict surgical phases using sensors
that require little to no installation or maintenance time.

2 Data

2.1 Medical procedure

The type of surgery we chose for this study is a laparoscopic cholecystectomy
(minimally invasive removal of the gallbladder). It is performed regularly, is a



Fig. 1. All sensor data from one exemplary surgery. Best viewed in color. From top to
bottom: surgical phase (color-coded ground truth), irrigation weight, suction weight,
intra-abdominal pressure, HF coagulation, HF cutting, OR room light, surgical lamp,
table inclination, alligator forceps, PE forceps, plastic-clip applicator, laparoscopic scis-
sors, irrigation rod, suction rod, metal-clip applicator. Continuous signals are shown
in blue, and binary signals in red (when active). Note that the last signal is blank in
this example because the metal-clip applicator was not used in this surgery.

highly standardized surgery, and is well known in the field of surgical workflow
analysis.

Under general anesthesia and after inflating the abdomen with inert gas,
four trocars are inserted as working channels through minimal incisions in the
abdominal wall (phase 1). Next, the area known as Calot’s triangle is prepared
so that the cystic duct and cystic artery are exposed (phase 2). The cystic duct
and artery are then sealed off using plastic or metal clips and cut (phase 3).
Next, the gallbladder is completely detached from the liverbed (phase 4), and
then the liver and surrounding tissue is checked for bleeding (phase 5). The
detached gallbladder is then packaged in a plastic bag and retrieved from the
body (phase 6). Finally the trocars are removed, the gas is drained, and the
incisions are closed (phase 7). Occasionally the orders of phases 5 and 6 can be
swapped, but this does not occur in our dataset.

2.2 Sensors

We equipped an operating room at (Medical department, Anonymous Hospital,
Some university), with sensors to capture various intraoperative signals. Com-
parable to the work in [10], we were able to record a total of 15 signals, of which
4 were continuous and the remaining 11 were binary. The continuous signals in-
clude the intra-abdominal pressure applied by the insufflator, the weight of the
irrigation and suction bags respectively, and the inclination of the surgical table



as it is adjusted throughout the intervention. Two of the binary signals are the
state of the OR light and the surgical lamp, two further signals depict the mode
of the high-frequency (HF) generator used for coagulating or cutting tissue by
applying monopolar current. The remaining 7 signals indicate usage of the up
to 7 laparoscopic instruments.

The first half of the described signals, namely the continuous measurements,
the light signals, and the HF modes, can be recorded by attaching suitable
sensors to corresponding places of the surgical table or on status indication
LEDs, resulting in minimal installation effort. These rapidly-deployable sensors
should extend easily to other hospitals.

The instrument-usage signals require more elaborate sensors. In our case
radio frequency identification (RFID) tags have been attached to the instruments
and an array of antennas was placed on the instrument table. An instrument is
considered to be in use (with its signal being active) if the corresponding RFID
tag cannot be detected within range of the antennas. This generally requires more
infrastructure and therefore cannot be made available within a short timeframe
in most operating theaters. Also, we note that the RFID signals are much more
noisy than the other signals; this can be seen clearly in Fig. 1.

3 Methods

3.1 Feature Extraction

As a first step, we extract features at every time step for every input signal.
The features are based on raw signal values, windowed means, windowed stan-
dard deviations, and slopes of windowed linear fits. Window-based features are
computed using various durations (4 s, 16 s, 64 s, and 256 s). Cross validation
was not used here; we simply used powers of 4 in order to capture both short-
and long-term trends. Furthermore, the windows always end at the current time
step; this avoids using information from the future (for online applications). This
results in 4×3+1 = 13 features per time step per signal. Finally, to also capture
behavior that was confined to the past, we copy all features from earlier times
(4 s, 16 s, 64 s, and 256 s) over to the current time step. This results in a total
of 13 × 5 = 65 features per signal per time step.

3.2 Classification

We will compare three different classification methods to classify each time step
into 1 of 7 possible phases. These methods are based on support vector machines
(SVMs) [5,7], hidden Markov models (HMMs) [15], and conditional random fields
(CRFs) [11,19].

In the first method, we take a one-vs-one [2] approach to multi-class learning
with linear SVMs1, resulting in 7 × 6 ÷ 2 = 21 classifiers. At test time, the

1 Gaussian-kernel SVMs were also considered, also using a logarithmic grid search to
determine parameters, but performance did not improve over linear SVMs.



prediction for each time step is the phase with the most votes among the 21
classifiers. This results in classification with no regard to temporal consistency
and is used as a baseline. Next, to provide further input to the next two methods,
we extract SVM scores for a different set of training data.

In the second method, SVM scores are used as observations in a Gaussian
HMM with diagonal covariance. This generative approach models the distri-
bution over both observations and unobserved phases. Training occurs using a
training set separate from that of the SVMs’; this process is simple because
phases are observed during training, and there is therefore no need for expecta-
tion maximization. At test time, phases are predicted on a sequence-by-sequence
basis; for each sequence, the most-likely phase configuration over all time steps
is determined using a standard forward-backward algorithm [15].

In the third method, SVM scores are used as features in a linear-chain con-
ditional random field. This discriminative approach models the distribution over
phases given observations. Unary potentials for each phase are computed us-
ing the 21 SVM scores and 1 bias term, resulting in a total of 7 × 22 = 154
unary weights (shared across time). Pairwise potentials for each (phase, phase)
pair are computed using just 1 bias term, resulting in 7 × 7 = 49 pairwise
weights (again shared over time). Training is performed by maximizing the (con-
vex) L2-regularized conditional likelihood using standard nonlinear-optimization
techniques. At test time, phases are predicted on a sequence-by-sequence ba-
sis; for each sequence, the most-likely phase configuration over all time steps
is determined. (Marginals during training and most-likely phase configurations
during testing are both computed efficiently using standard message-passing
techniques [3].)

For all methods, all input features are normalized, and free parameters (the
SVMs’ soft-margin parameter and the CRF’s L2-regularization parameter) are
fixed using a logarithmic grid search and 4-fold cross validation using their re-
spective training sets. Varying class sizes were accounted for during SVM training
by scaling slack parameters and during CRF training by including bias terms.

4 Experiments, Results, and Discussion

4.1 Experimental Setup

We use data from 42 surgeries, each annotated by a medical expert using associ-
ated laparoscopic videos. Fig. 1 shows data from an exemplary surgery. The top
row indicates ground-truth surgical phase; the next eight rows show continuous
and binary data from the rapidly-deployable sensors; and the bottom seven rows
show binary data from the RFID sensors. One RFID signal is not shown and
was never used to record data in our experiments.

We aim to evaluate performance for each of the three methods, denoted
SVM, SVM-HMM, and SVM-CRF, under two difference scenarios: using data
from all available sensors and using data from rapidly-deployable sensors only.
The following process was carried out once for each scenario.



Fig. 2. Example predictions from the same sequence shown in Fig. 1, using all available
sensors. Best viewed in color. From top to bottom: ground truth, SVM prediction,
SVM-HMM prediction, SVM-CRF prediction. Accuracies are 78.4%, 81.1%, and 79.8%
respectively.

SVM SVM-HMM SVM-CRF

Precision Recall Jaccard Precision Recall Jaccard Precision Recall Jaccard

PT 89.8 91.6 82.4 92.5 89.0 82.7 89.0 88.8 78.7

P 77.5 70.2 58.2 78.5 60.8 51.5 83.8 71.8 62.8

C 71.5 71.7 55.7 61.5 79.6 53.5 67.1 79.2 57.3

DG 64.3 62.4 46.3 68.3 59.3 46.4 70.0 71.7 53.9

SB 70.5 82.0 61.0 72.7 84.9 64.1 81.6 67.7 57.3

RG 81.5 77.9 66.0 72.9 81.3 61.4 69.4 89.8 62.8

F 74.9 77.6 60.7 79.2 59.3 47.8 87.6 47.9 39.9

Table 1. Precision, recall, and Jaccard index for each method and surgical phase
using data from all sensors. All metrics were computed by averaging results over four
randomly-chosen but non-overlapping test sets, each consisting of 10 surgeries. The
overall accuracies for each method are 75.9%, 73.1%, and 74.4% respectively. Phases
are indicated by their abbreviations: Place Trocar, Preparation, Clipping, Detaching
Gallblader, Stop Bleeding, Retrieve Gallbladder, and Finalization.

We begin our experiments by randomly shuffling the order of the 42 surg-
eries. Next we select surgeries 1–16 for SVM training, 17–32 for HMM and CRF
training, and 33–42 for testing. Training and testing is then carried out as ex-
plained in Sec. 3.2 and performance is evaluated. Performance metrics include
precision, recall, and Jaccard index, all computed on a per-phase basis, and ac-
curacy, computed globally as the percentage of correct predictions. This process
is repeated for 4 trials with randomly-chosen but non-overlapping test sets, and
final performance metrics are averaged across the trials.

4.2 Results

We first present results using data from all sensors. Fig. 2 shows results for one
exemplary surgery, and Table 1 shows all performance metrics averaged over all
trials, as described in Sec. 4.1. The accuracies for the SVM, SVM-HMM, and
SVM-CRF, averaged over all trials, are 75.9%, 73.1%, and 74.4% respectively.



Fig. 3. Example predictions from the same sequence shown in Fig. 1, using rapidly-
deployable sensors only. Best viewed in color. From top to bottom: ground truth, SVM
prediction, SVM-HMM prediction, SVM-CRF prediction. Accuracies are 70.2%, 69.5%,
and 74.2% respectively.

SVM SVM-HMM SVM-CRF

Precision Recall Jaccard Precision Recall Jaccard Precision Recall Jaccard

PT 93.0 95.5 89.0 91.0 89.6 82.1 88.3 92.9 82.2

P 77.1 61.3 51.5 73.7 51.3 42.3 76.3 61.3 51.0

C 62.1 83.9 55.2 62.3 80.5 54.3 65.0 82.2 57.3

DG 69.9 50.2 41.5 61.1 39.9 31.8 60.4 57.1 41.3

SB 65.9 80.7 56.8 58.5 85.8 52.7 67.4 62.1 47.1

RG 81.1 74.1 62.2 71.7 82.4 61.4 68.5 88.7 61.5

F 71.6 75.7 56.4 76.6 61.0 49.8 82.3 45.2 37.1

Table 2. Precision, recall, and Jaccard index for each method and surgical phase using
data from rapidly-deployable sensors only. All metrics were computed by averaging
results over four randomly-chosen but non-overlapping test sets, each consisting of
10 surgeries. The overall accuracies for each method are 73.9%, 69.6%, and 70.4%
respectively.

Next we present results using data from rapidly-deployable sensors only. Fig.
3 shows results for the same exemplary surgery, and Table 2 shows all perfor-
mance metrics averaged over all trials, as described in Sec. 4.1. The accuracies for
the SVM, SVM-HMM, and SVM-CRF, averaged over all trials, become 73.9%,
69.6%, and 70.4% respectively.

4.3 Discussion

One takeaway from these experiments is that the temporal component intro-
duced by the HMM and CRF does not improve performance. We believe that
this is because the HMM and the linear-chain CRF only capture extremely-local
temporal dependencies. This essentially results in a smoothed version of the
SVM results, depending (indirectly through learned parameters) on the relative
abundances of same-phase transitions and different-phase transitions. Confusion
matrices for SVM-only results are included in Table 3.

In future work we plan to experiment with more complex models which
do a better job at capturing temporal relationships. Some models we plan to



PT P C DG SB RG F PT P C DG SB RG F

PT 91.8 3.9 0.0 0.9 0.6 0.0 2.8 PT 95.6 2.9 0.8 0.1 0.5 0.0 0.1

P 6.9 69.6 10.8 11.5 1.1 0.0 0.0 P 4.3 60.4 27.5 5.6 0.8 0.0 1.4

C 3.1 10.0 71.8 14.4 0.8 0.0 0.0 C 0.5 10.2 83.7 5.4 0.1 0.0 0.0

DG 1.1 6.6 14.1 62.1 16.0 0.0 0.0 DG 0.1 5.1 21.1 50.5 23.1 0.0 0.0

SB 0.0 0.2 2.2 13.0 82.0 2.6 0.0 SB 0.0 0.6 1.1 15.7 80.7 1.9 0.0

RG 0.9 0.0 0.4 0.7 3.0 78.1 16.8 RG 1.8 0.0 0.1 0.2 2.2 74.1 21.5

F 0.4 0.0 0.1 0.0 0.0 22.3 77.2 F 0.5 0.0 0.0 0.0 0.0 24.2 75.2

Table 3. SVM classification confusion matrices using all sensors (left) and rapidly-
deployable sensors only (right). Rows correspond to ground truth, columns to predic-
tions. Entries were computed by accumulating ground truth and predictions over four
randomly-chosen but non-overlapping test sets, each consisting of 10 surgeries.

consider are semi-Markov CRFs [16], which model segment-level phases and
transitions rather than time-step-level phases and transitions, and skip-chain
CRFs [18], which include longer-term pairwise connections, typically at the cost
of performing approximate inference rather than exact inference.

Finally we note that 74% accuracy is obtainable using only the 8 of 15 sensors
that are rapidly deployable.

5 Conclusions

The first contribution of this work is a performance comparison using support
vector machines, hidden Markov models, and conditional random fields, applied
to automated surgical-phase recognition. We found that SVMs alone achieve
accuracy rates of approximately 75%. Furthermore, we found that the tempo-
ral component introduced by HMMs and linear-chain CRFs does not improve
performance.

The second contribution consists of demonstrating that 74% accuracy can be
achieved using only 8 rapidly-deployable sensors. This is a reduction of only 2%
accuracy from using all 15 sensors, including those that take much more time
and effort to install.
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