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Abstract. We propose a data structure for finding the exact nearest
neighbors in 3D in approximately O(log(log(N)) time. In contrast to
standard approaches such as k-d-trees, the query time is independent
of the location of the query point and the distribution of the data set.
The method uses a hierarchical voxel approximation of the data point’s
Voronoi cells. This avoids backtracking during the query phase, which
is a typical action for tree-based methods such as k-d-trees. In addition,
voxels are stored in a hash table and a bisection on the voxel level is used
to find the leaf voxel containing the query point. This is asymptotically
faster than letting the query point fall down the tree. The experiments
show the method’s high performance compared to state-of-the-art ap-
proaches even for large point sets, independent of data and query set
distributions, and illustrates its advantage in real-world applications.

1 Introduction

Quickly finding the closest point from a large set of data points in 3D is cru-
cial for alignment algorithms, such as ICP, as well as industrial inspection and
robotic navigation tasks. Most state-of-the-art methods for solving the nearest
neighbor problem in 3D are based on recursive subdivisions of the underlying
space to form a tree of volumes. The various subdivision strategies include uni-
form subdivisions, such as octrees [14], as well as non-uniform subdivisions, such
as k-d-trees [2] and Delaunay or Voronoi based subdivisions.

Tree-based methods require two steps to find the exact nearest neighbor.
First, the query point falls down the tree to find its corresponding leaf node. Since
the query point might be closer to the boundary of the node’s volume than to the
data points contained in the leaf node, tree backtracking is required as a second
step to search neighboring volumes for the closest data point. The proposed
method improves the time for finding the leaf node and removes the need for
potentially expensive backtracking by using voxels to recursively subdivide space.
The leaf voxel that contains the query point is found by bisecting the voxel size.
For trees of depth L, this approach requires only O(log(L)) operations, instead
of O(L) operations when letting the query point fall down the tree. In addition,
each voxel contains a list of all data points whose Voronoi cells intersect that
voxel, such that no backtracking is necessary. By storing the voxels in a hash table
and enforcing a limit on the number of Voronoi intersections per voxel, the total
query time is independent of the position of the query point and the distribution
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of data points. The theoretical query time is of magnitude O(log(log(N)), where
N is the size of the target data point set.

The amount of backtracking that is required in tree-based methods depends
on the position of the query point. Methods based on backtracking therefore
have non-constant query times even when using the same dataset, making them
difficult to use in real-time applications. Since the proposed method does not
require backtracking, the query time becomes almost independent of the position
of the query point. Further, the method is largely parameter free, does not require
an a-priori definition of a maximum query range, and is straightforward and easy
to implement.

We evaluate the proposed method on different synthetic datasets that show
different distributions of the data and query point sets, and compare it to two
state of the art methods: a self-implemented k-d-tree and the Approximate Near-
est Neighbour (ANN) library [15], which, contrary to its name, allows also to
search for exact nearest neighbors. The experiments show that the proposed
method is significantly faster for larger data sets and shows an improved asymp-
totic behaviour. As a trade-off, the proposed method uses a more expensive
preprocessing step. Finally, we demonstrate the performance of the proposed
method within two applications on real-world datasets, pose refinement and sur-
face inspection. The runtime of both applications is dominated by the nearest
neighbor lookups, which is why both greatly benefit from the proposed method.

2 Related Work

An extensive overview over different nearest neighbor search strategies can be
found in [17]. Nearest-neighbor search strategies can roughly be divided into tree-
based and hash-based approaches. Concerning tree-based methods, variants of
the k-d-tree [2] are state-of-the-art for applications such as ICP, navigation and
surface inspection [8]. For high-dimensional datasets, such as images or iamge
descriptors, embeddings into lower-dimensional spaces are sometimes used to
reduce the complexity of the problem [13].

Many methods were proposed for improving the nearest neighbor query time
by allowing small errors in the computed closest point, i.e., by solving the ap-
proximate nearest neighbor problem [1, 11, 6]. While faster, using approximations
changes the nature of the lookup and is only applicable for methods such as ICP,
where a small number of incorrect correspondences can be dealt with statisti-
cally. The iterative nature of ICP can be used to accelerate subsequent nearest
neighbor lookups through caching [16, 10]. Such approaches are, however, only
usable for ICP and not for defect detection or other tasks.

Yan and Bowyer [18] proposed a regular 3D grid of voxels that allow constant-
time lookup for a closest point, by storing a single closest point per voxel. How-
ever, such fixed-size voxel grids use excessive amounts of memory and require a
tradeoff between memory consumption and lookup speed. The proposed multi-
level adaptive voxel grid overcomes this problem, since more and smaller voxels
are created only at the ‘interesting’ parts of the data point cloud, while the
speed advantage of hashing is mostly preserved. Glassner [9] proposed to use a
hash-table for accessing octrees, which is the basis for the proposed approach.
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Using Voronoi cells is a natural way to approach the nearest neighbor prob-
lem, since a query point is always contained in the Voronoi cell of its nearest
neighbor. Boada et al . [5] proposed an octree that approximates generalized
Voronoi cells and that can be used to approximately solve the nearest neighbor
problem [4]. Their work also gives insight into the construction costs of such
an octree. Contrary to the proposed work, their work concentrates on the con-
struction of the data structure and solves the nearest neighbor problem only
approximately. Additionally, their proposed octree still requires O(depth) oper-
ations for a query. However, their work indicates how the proposed method can
be generalized to other metrics and to shapes other than points. Similar, [12]
proposed an octree-like approximation of the Voronoi tesselation. Birn et al . [3]
proposed a full hierarchy of Delaunay triangulations for 2D nearest neighbor
lookups. However, the authors state that their approach is unlikely to work well
in 3D and beyond.

3 Method

Notation and Overview We denote points from the original data set as x ∈ D
and points of the query set q ∈ Q. Given a query point q, the objective is to
find the closest point NN(q, D) = argminx∈D |q − x|2. The individual Voronoi
cells of the Voronoi diagram of D are denoted voro(x), which we see as closed
set.

The proposed method requires a pre-processing step where the voxel hash
structure for the data set D is created. Once this data structure is precomputed,
it remains unchanged and can be used for subsequent queries. The creation of
the data structure is done in three steps: The computation of the Voronoi cells
for the data set D, the creation of the octree and the transformation of the octree
into a hash table.
Octree Creation Using Voronoi cells is a natural way to approach the nearest
neighbor problem. A query point q is always contained within the Voronoi cell
of its closest point, i.e., q ∈ voro(NN(q, D)). Thus, finding a Voronoi cell that
contains q is equivalent to finding NN(q, D). However, the irregular and data-
dependent structure of the Voronoi tessellation does not allow a direct lookup.
We thus use the octree to create a more regular structure on top of the Voronoi
diagram, which allows to quickly find the corresponding Voronoi cell.

After computing the Voronoi cells for the data set D, an octree is created,
whose root voxel contains the expected query range. Note that the root voxel
can be several thousand times larger than the extend of the data set without
significant performance implications.

Contrary to traditional octrees, where voxels are split based on the number
of contained data points, we split each voxel based on the number of intersecting
Voronoi cells: Each voxel that intersects more than Mmax Voronoi cells is split
into eight sub-voxels, which are processed recursively. Fig. 1 shows a 2D example
for this splitting. The set of data points whose Voronoi cells intersect a voxel v
is denoted

L(D, v) = {x ∈ D : voro(x) ∩ v 6= ∅}. (1)
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Fig. 1. Toy example in 2D of the creation of the hierarchical voxel structure. For the
data point set (left), the Voronoi cells are computed (center). Starting with the root
voxel that encloses all points, voxels are recursively split if the number of intersecting
Voronoi cells exceeds Mmax. In this example, the root voxel is split until each voxel
intersects at most Mmax = 5 Voronoi cells (right).

This splitting criterion allows a constant processing time during the query phase:
For any query point q contained in a leaf voxel vleaf , the Voronoi cell of the
closest point NN(q, D) must intersect vleaf . Therefore, once the leaf node voxel
that contains q is found, at most Mmax data points must be searched for the
closest point. The given splitting criterion thus removes the requirement for
backtracking.

The cost for this is a deeper tree, since a voxel typically intersects more
Voronoi cells than it contains data points. The irregularity of the Voronoi tes-
sellation and possible degenerated cases, as discussed below, make it difficult to
give theoretical bounds on the depth of the octree. However, experimental vali-
dation shows that the number of created voxels scales linearly with the number
of data points |D| (see Fig. 4(a)).

Hash Table The result of the recursive subdivision is an octree, as depicted
in Fig. 1. To find the closest point of a given query point q, two steps are
required: Find the leaf voxel vleaf (q) which contains q and search all points in
L(D, vleaf (q)) for the closest point of q. The computation costs for finding the
leaf node are on average O(depth) ≈ O(log(|D|)) when letting q fall down the
tree. We propose to use the regularity of the octree to reduce those costs to
O(log(depth)) ≈ O(log(log(|D|))). For this, all voxels of the octree are stored in
a hash table which is indexed by the voxel’s level l(v) and its index idx(v) ∈ Zd
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Fig. 2. (a) The hash table stores all voxels v, which are indexed through their level
l and their index idx. The hash table allows to check for the existence of a voxel in
constant time. (b) Toy example in 2D of how to find the leaf voxel by bisecting its
level. Finding the leaf node by letting the query point fall down the tree would require
O(depth) operations on average (green path). Instead, the leaf node is found through
bisection of its level. In each step, the hash table is used to check for the presence of
the corresponding voxel. The search starts with the center level l1 and, since the voxel
exists, proceeds with l2. Since the voxel at level l2 does not exist, level l3 is checked
and the leaf node is found.

(Fig. 2(a)). idx(v) is the integer-valued position of the voxel within the voxel
grid of its level l(v).

The leaf voxel vleaf (q) is then found through bisection of its level. The min-
imum and maximum voxel level is initialized as lmin = 1 and lmax = depth.
The existence of the voxel with the ‘center’ level lc = b(lmin + lmax)/2c is tested
using the hash table. If the voxel exists, the search proceeds with the interval
[lc, lmax]. Otherwise, it proceeds to search the interval [lmin, lc − 1]. The search
continues until the interval contains only one level, which is the level of the leaf
voxel vleaf (q). Fig. 2 illustrates this bisection on a toy example.

Note that in our experiments, tree depths were in the order of 20-40 such that
the expected speedup over the traditional method was around 5. Additionally,
each voxel in the hash table contains the minimum and maximum depth of its
subtree to speedup the bisection. Additionally, the lists L(D, v) are stored only
for the leaf nodes. The primary cost during the bisection are cache misses when
accessing the hash table. Therefore, an inlined hash table is used to reduce the
average amount of cache misses.

Degenerated Cases For some degenerated cases, the proposed method for
splitting voxels based on the number of intersecting Voronoi cells might not
terminate. This happens when more than Mmax Voronoi cells meet at a single
point, as depicted in Fig. 3. To avoid infinite recursion, a limit Lmax on the depth
of the octree is enforced. In such cases, the query time for points that fall within
such an unsplit leaf voxel is larger than for other query points. However, we
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Fig. 3. Example of a degenerated point set (left) where many Voronoi cells meet at one
point (center). In this case, the problem of finding the nearest neighbor is ill-posed for
query points close to the center of the circle. To capture such degenerated cases, voxel
splitting is stopped after Lmax subdivisions (right). See the text for more comments
on why such situations are not of practical interest.

Table 1. Performance in the real-world scenarios. |D| is the number of data points,
|Q| the number of query points. The proposed voxel hash structure is up to one order
of magnitude faster than k-d-trees, even for large values of Mmax

Voxel Hash, Mmax =
Dataset |D| |Q| 30 60 90 k-d-tree ANN

ICP Matching 990,998 1,685,639 0.74 s 1.04 s 1.41 s 12.19 s 22.0 s
Comparison 990,998 2,633,591 0.85 s 1.29 s 1.87 s 10.62 s 232.1 s
ICP Room 260,595 916,873 0.26 s 0.37 s 0.41 s 0.97 s 2.5 s

found that in practice such cases appear only on synthetic datasets. Also, since
the corresponding leaf voxels are very small, chances of a random query point
to fall within the corresponding voxel are small. Additionally, note the problem
of finding the closest point is ill-posed in situations where many Voronoi cells
meet at a single point and the query point is close to that point: Small changes
in the query point can lead to arbitrary changes of the nearest neighbor. The
degradation in query time can be avoided by limiting the length of L(D, v) of the
corresponding leaf voxels. The maximum error made in this case is in bound by
the diameter of the voxel of level Lmax. For example, Lmax = 30 reduces the error
to 2−30 times the size of the root voxel, which is already smaller than the accuracy
of single-precision floating point numbers. Summing up, the proposed method
degrades only in artificial situations where the problem itself is ill-posed, but
the method’s performance guarantee can be restored at the cost of an arbitrary
small error.

4 Results

Several experiments were conducted to evaluate the performance of the proposed
method in different situations and to compare it to the k-d-tree and the ANN
libary [15] as state-of-the-art methods. Both the k-d-tree and the voxel hash
structure were implemented in C with similar optimization. The creation of the
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Fig. 4. Construction and memory costs of the proposed data structure for the CLUS-
TER dataset. (a) The number of created voxels depends linearly on the size of the
data cloud. As a rule of thumb, one voxel is created per data point. Note that in prac-
tice, each voxel requires around 16-24 bytes of memory. (b) The creation time of the
voxel data structure. The creation of the Voronoi cells is independent of the value of
Mmax and its creation time is plotted separately. Though the creation of the voxel data
structure is significantly slower than for the k-d-tree and the ANN library, the creation
times are still reasonable for off-line processing. Note that the constant performance
of the proposed method for less than 105 data points is based on our particular imple-
mentation, which is optimized for large data sets and requires constant time for the
creation of several caches. Overall, larger values of Mmax lead to faster and less memory
consuming data structure creation, at the expense of matching time (see Fig. 6).

voxel data structure was parallelized, queries were not. Times were measured on
an Intel Xenon E5-2665 with 2.4 GHz.

Data Structure Creation Though the creation of the data structure is signif-
icantly more expensive than the creation of the k-d-tree and the ANN library,
those costs are still within reasonable bounds. Fig. 4(b) compares the creation
times for different values of Mmax. The creation of the Voronoi cells is inde-
pendent of the value of Mmax and thus plotted separately. Fig. 4(a) shows the
number of created voxels. They depend linearly on the number of data points,
while the choice of Mmax introduces an additional constant factor. Note that
the constant performance of the proposed method for less than 105 data points
is based on our particular implementation, which is optimized for large data sets
and requires constant time for the creation of several caches.

Synthetic Datasets We evaluate the performance on different datasets with
different characteristics. Three synthetic datasets were used and are illustrated in
the top row of Fig. 6. For dataset RANDOM, the points are uniformly distributed
in the unit cube [0, 1]3. For CLUSTER, points are distributed using a Gaussian
distribution. For SURFACE, points are taken from a 2D manifold and slightly
disturbed. For each data set, two query sets with 1.000.000 points each were
created. For the first set, points were distributed uniformly within the bounding
cube surrounding the data point set. The corresponding times are shown in the
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(a) (b)

Fig. 5. Example application for the proposed method. A 3D scan of the scene was
acquired using a multi-camera stereo setup and approximate poses of the pipe joint were
found using the method of Drost et al . [7]. (a) The poses were refined using ICP. The
corresponding nearest neighbor lookups were logged and used for the evaluation show
in Table 1. (b) For each scene point close to one of the detected objects, the distance
to the object is computed and visualized. This allows the detection of defects on the
surface of the objects. The lookups were again logged and used for the performance
evaluation in Table 1.

center row of Fig. 6. The second query set has the same distribution as the data
set, with the corresponding timings shown in the bottom row of Fig. 6.

The proposed data structure is significantly faster than the simple k-d-tree
for all datasets with more than 105 points. The ANN library shows similar
performance than the proposed method for Mmax = 30 for the RANDOM and
CLUSTER datasets. For the SURFACE dataset, our method clearly outperforms
ANN even for smaller point clouds. Note that the SURFACE dataset represents
a 2D manifold and thus shows the behaviour for ICP and other surface-based
applications. Overall, the performance of the proposed method is less dependent
on the distribution of data and query points. This advantage allows our method
to be used in real-time environments.

Real-World Datasets Finally, real-world examples were used for evaluating the
proposed method’s performance. First, several instances of an industrial object
were detected in a scene acquired with a multi-camera stereo setup. The original
scene and the matches are shown in Fig. 5. We found approximate positions
of the target object using the method of Drost et al . [7] and subsequently used
ICP for each match for a precise alignment. The nearest neighbor lookups during
ICP were logged and later evaluated with the available methods. The sizes of
the data clouds and the lookup times are shown in Table 1.

Afterwards, we used the proposed method to find surface defects of the de-
tected objects. For this, the distances of the scene points to the closest found
model were computed. The distances are visualized in Fig. 5(b) and show a sys-
tematic error in the modeling of the object. We are, however, only interested in
the required inspection time, which is shown in Table 1.

Finally, we used a Kinect sensor to acquire two slightly rotated scans of
an office room and aligned both scans using ICP. For all three datasets, the
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proposed method significantly outperforms both our k-d-tree implementation
and the ANN library by up to one order of magnitude.

5 Conclusion

We proposed and evaluated a novel data structure for nearest-neighbor lookup
in 3D, which can easily be extended to 2D. Compared to traditional tree-based
methods, backtracking was made redundant by building an octree on top of the
Voronoi diagram. In addition, a hash table was used, allowing a fast bisection
search of the leaf voxel of a query point, which is faster than letting the query
point fall down the tree. The proposed method combines the best of tree-based
approaches and fixed voxel grids.

The evaluation on synthetic datasets shows that the proposed method is
faster than traditional k-d-trees and the ANN library on larger datasets and has a
query time which is almost independent of the data and query point distribution.
Though the proposed structure takes significantly longer to be created, those
times are still within reasonable bounds. The evaluation on real datasets shows
that real-world scenarios such as ICP and surface defect detection greatly benefit
from the performance of the method.
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