
Using Semantic Web Languages in
Argumentation Models

Florian Echtler

TU München <echtler@in.tum.de>

Technical Report FKI-253-06
AI/Cognition Group

Technical University of Munich

Abstract. Recent research has created a multitude of argumentation
models with varying degrees of formality. In this paper, we look at the
feasibility of using semantic web languages like OWL and SWRL as
an unbiased template for developing such models. We then present the
Argumentation Ontology (ArgOn) as an example.

1 Introduction

As seen in the comprehensive survey by Rahwan et al. [Rah03], a large amount of
papers regarding argumentation-based negotiation (ABN) have been published
in recent years. Most of these publications formalize the subject to some extent,
however, this presents several challenges.

These formal models, for example, are usually not very similar and therefore
difficult to build on.1

When an actual implementation is desired, the specification has to be hard-
coded into the negotiating software agents and is consequently hard to change.

Moreover, the agents usually communicate in a different formal language
than the one which was used for the argumentation scheme.

All these shortcomings can be addressed in terms of an ontology of argumen-
tation. Such an ontology has to be sufficiently neutral to subsume the majority
of existing argumentation models. When a model has now been re-formulated,
a suitable parser can afterwards provide easily adaptable source code. Addition-
ally, both the definition of the dialogue and its content are now described using
with only a single formalism.

1 Interestingly enough, no single one of these models has so far emerged as the argu-
mentation standard. This suggests the conclusion that argumentation models have
to be tailored towards a specific application.



2 The Argumentation Ontology (ArgOn)

The slowly emerging standard for ontologies is OWL [McG04], the Web Ontol-
ogy Language. Unfortunately, OWL lacks the expressive power to represent the
modal logics which are usually employed to represent argumentation models,
because it is impossible to create new (modal) operators without violating the
language specification.

However, two extensions to OWL have been proposed, SWRL [Hor04] and
SWRL-FOL [Pat05], which allow the expression of Horn-like rules and first-order
logic, respectively. Along with reification (meta-statements, described more in-
depth below), it is possible to achieve expressive power similar to existing modal
logic systems.

OWL itself is an extension of the RDF (Resource Description Framework),
which is in turn an XML-based language to formalize statements as triples of
subject, predicate and object. From a formal point of view, RDF describes a
directed graph, where subjects and objects represent the nodes, while predicates
stand for edges from subject to object (see also [Kly04]).

OWL comes in three flavours, which are OWL Lite, OWL DL and OWL Full
and increase in expressiveness as well as computational complexity regarding
conclusions. It would be desirable for the ontology to remain inside OWL DL,
where all conclusions are guaranteed to be decidable. Unfortunately, as reifica-
tion is necessary to model argumentation, the expressive power of OWL DL is
insufficient. The presented ontology is therefore in OWL Full.

As a development tool, the Protege editor with additional plugins for OWL
and SWRL was chosen. An overview of the ontology structure is presented in
Figure 1. There are three main concepts, which will be detailed below.2

2.1 Core Concepts Relating to Agents

There are two main classes with regard to agents, Resource and Actor. It is
assumed that each individual which takes part in the argument has its own
knowledge base.

The Actor Class. Actors represent participants in the negotiation process.
Remember that each agent holds its own instance of the knowledge base, there-
fore it contains an instance of Actor for every known participant including it-
self. This latter instance is marked by an auxiliary predicate self of datatype
xsd:boolean.

Actors are described through four additional predicates:
2 For better readability, class names will be set in monospace font.

http://protege.stanford.edu/


canDo describes the actor’s abilities (instances of Ability)
owns is a list of the actor’s possessions (instances of Object)
knows contains the knowledge of the actor (instances of Information)
does is a history of things the actor has done (instances of Action)

Note that in most cases, these properties contain information about some
other actor which may therefore be incomplete, as no agent is omniscient.

A multiagent system based on this ontology should take care that each par-
ticipant can be referred to by an unique identifier. This is necessary to make
unambiguous statements about other agents.

The Resource Class. Resources represent a generic view of those entities that
the argument is about. Each may require and/or consume other resources, e.g.
performing an action usually consumes time (which is also represented as a
resource) and may require certain abilities.

An utility value is associated with every resource an agent knows about. It is
assumed that every agent aims to maximize its own total utility, thereby defining
its goals in the negotiation.

The Resource class has four subclasses:

Ability Abilities are prerequisites for actions. There are two default abilities
which every actor is capable of, Communicate and Nothing. Abilities can be
transferred between actors.

Action An instance of a subclass of Action represents one single execution of
this action at a specific time.

Object represents a passive physical (e.g. an apple) or virtual entity (e.g. band-
width).

Time models a timespan, for example the time required to execute an action.

Of these abstractions, the most important one is Action, which shall be dis-
cussed in detail. The subclasses are designed to be as generic as possible, in
order to put the least possible influence on further development. An action is
described, in addition to the predicates inherited from Resource, by happensAt
(as this is a single event, it occurs at a specific time) and changes. This latter
predicate describes the properties that are changed when this action is executed.

First, the actions Create and Idle should be mentioned, which model the
construction of new objects from existing ones and the null-action, respectively.
Creation of a new object, for example, changes the property owns, as the creator
afterwards has this new entity in its possession.

Of far greater importance, however, is the Transfer action. It has three sub-
actions, which are Give (transfer of Objects), Teach (transfer of Abilities)



and finally Tell (transfer of Information).

Tell is undoubtedly one of the most central classes of this argumentation
ontology, as the argumentation itself is but a transfer of arguments, which are
in turn pieces of information.

It might therefore seem questionable to locate this class several levels deep
inside the class hierarchy. However, as any action can itself be a resource which is
negotiated over, and the transfer of information is in turn a more specific action
than the transfer of abstract entities, this nesting can be justified.

2.2 Core Concepts Relating to Argumentation

The Information Class. Information instances are used similar to rdf:Statement
objects to represent propositions (reification, meta-statements)3. Like its pre-
decessor, this class has the three primary predicates subject, predicate and
object.

From an abstract point of view, such an object now describes one edge in the
RDF graph which constitutes an agent’s knowledge base. As this is therefore a
meta-statement, the ontology expands to a superset of OWL DL and the guar-
anteed decidability is lost. However, without reification, expressing modalities
like ”Statement S is believed by actor A” becomes impossible. As modality of
beliefs is absolutely necessary to describe argumentation - there is no need to
argue if everyone has the same beliefs - the loss of guaranteed decidability is
unfortunate but unavoidable.

Again, several subclasses have been defined to refine the concept of Information,
for example Request, which encapsulates the concept ”Actor does Action”.
This can be refined further, e.g. into a Question, where the action is defined to
be Tell (see below for an example).

A different problem arises from the fact that OWL is based on the open world
assumption - every statement in the knowledge base is true, and all other state-
ments are unknown. In argumentation, however, one must be able to express
that a certain statement is not true. For this purpose, a new auxiliary predicate
truthValue is used, which describes the beliefs of the agent from which the
statement originated. It is a data-valued property of type xsd:boolean and is
introduced in a subclass Argument.

By using this predicate, an agent can now state that he believes a certain
information to be false, in order to influence the world view of some other agent.
It is, of course, up to the receiving agent to decide whether to accept the new
statement and, consequently, delete the corresponding edge from its RDF graph.

3 rdf:Statement itself can’t be used as SWRL only allows using OWL entities in rules,
not RDF entities.



Should it decide to disregard the information, it can still insert the received
statement into its own representation of the other agent through the knows
property. This knowledge can be used later, for example, to notice inconsistencies
in the argumentation flow.

2.3 Using SWRL Rules

The parts of the ontology described so far deal with describing agents, state-
ments, and resources. However, they do not describe the behaviour of the agents
themselves. As OWL itself is static in nature, the necessity for a rule language
becomes obvious.

Though SWRL is so far no W3C recommendation, it is a well-fitting extension
to OWL. It allows the creation of Horn-like rules, consisting of the conjunction
of a set of atoms as rule body and usually a single atom as rule head. An atom
usually takes the form Class(?variable) or Predicate(?var1, ?var2) and
is true when the individual in question is a member of the specified class or a
predicate connecting the two individuals exists.

Consider the following example. It describes an agent which will do every-
thing it is asked for without disputing the request.

Request(?request) ∧ object(?request, ?action) ∧
subject(?request, ?actor) ∧ self(?actor, true) ⇒
does(?actor, ?action)

2.4 Example Dialogue

In this section, some snippets of a possible conversation between two agents Alice
and Bob are presented. These snippets are given in RDF triple notation, with a
namespace prefix of ex: for example.

The following triples are supposed to be present and unchangeable in the
knowledge bases of all agents. This should be guaranteed by the framework, for
reasons already discussed in Section 2.1.

ex:Alice rdf:type ex:Actor .
ex:Bob rdf:type ex:Actor .

Let us assume that Alice believes Bob to have something she wants. The
following triples are in her knowledge base:

ex:Alice ex:self "true"^^xsd:boolean .

ex:Item1 rdf:type ex:Object.
ex:Item1 ex:utility "2.0"^^xsd:float .



ex:Item2 rdf:type ex:Object.
ex:Item2 ex:utility "3.0"^^xsd:float .

ex:Alice ex:owns ex:Item1 .
ex:Bob ex:owns ex:Item2 .

Now, consider Alice asking Bob to give her Item2, which she values more
highly. This snippet of RDF is created in Alice’s knowledge base. Ideally, the
framework should take care of transmitting it to Bob after the Ask object has
been created.

ex:act1 rdf:type ex:Give .
ex:act1 ex:recipient ex:Alice .
ex:act1 ex:content ex:Item2 .

ex:req1 rdf:type ex:Request .
ex:req1 ex:subject ex:Bob .
ex:req1 ex:predicate ex:does .
ex:req1 ex:object ex:act1.

ex:msg1 rdf:type ex:Ask .
ex:msg1 ex:content ex:req1 .
ex:msg1 ex:recipient ex:Bob .

However, what if Alice’s information is outdated and Bob doesn’t have the
item in question any more? Bob will refuse the request and might also want to
give a reason for the refusal, as Alice would otherwise still wrongly believe that
Bob is in possession of Item2. The following statements are therefore sent back
from Bob:

ex:arg1 rdf:type ex:Argument .
ex:arg1 ex:subject ex:Bob .
ex:arg1 ex:predicate ex:owns .
ex:arg1 ex:object ex:Item2 .
ex:arg1 ex:truthValue "false"^^xsd:boolean .

ex:rej1 rdf:type ex:Rejection .
ex:rej1 ex:subject ex:req1 .
ex:rej1 ex:predicate ex:reason .
ex:rej1 ex:object ex:arg1 .

ex:msg2 rdf:type ex:Reject .
ex:msg2 ex:content ex:rej1 .
ex:msg2 ex:recipient ex:Alice .



3 Discussion

3.1 Comparison with Existing Approaches

Verheij [Ver05] also presents a draft of an argumentation ontology, written in
OWL. However, this ontology has several shortcomings. Its class hierarchy seems
quite arbitrary, and beyond the subclass relation, no further connections be-
tween the different argument types are described, neither by using reification
nor through rules. Moreover, it doesn’t touch the agent aspect which should be
present in any practice-oriented approach to argumentation, as an orientation
towards practice is already implied when using machine-readable languages like
OWL.

3.2 Future Work

The ontology presented in this paper is intentionally rather basic, in order to
remain as unbiased as possible. Therefore, it provides several opportunities for
future research.

As one of the goals of this work is to provide an easy comparison between
different argumentation models, it would be necessary to represent existing and
emerging models in terms of the ontology.

When working with complex argumentation schemes, it might then happen
that the presented framework, which is built on OWL and SWRL, is not ex-
pressive enough to fully capture the original meaning. In this case, it would be
necessary to look, for example, to SWRL-FOL (First-Order Logic) for increased
expressive power.

Another aspect is improving Protege’s functionality. For development with
SWRL-FOL, it would be convenient for the Protege editor to support it in ad-
dition to normal SWRL. As automatic code generation was also one of the goals
kept in mind, improving the Java code generator in Protege is also necessary.
Currently, it provides only a class framework without paying attention to class
restrictions, SWRL rules etc. In order to create agents from the ontology itself
with little additional work, these constraints have to be considered.

Previously, the truthValue predicate was introduced, allowing agents to as-
sert that a certain statement is false. However, as the datatype xsd:boolean
allows only the two values ”true” and ”false”, expressing the fact that a state-
ment is simply unknown to the agent becomes difficult. Omitting the boolean
predicate in an argument object might serve this purpose, but this needs to be
investigated further.



Finally, the subject of trust has not yet been addressed in this paper. The
presented ontology does nothing to prevent agents from lying or not fulfilling
their obligations, therefore, other agents would benefit from storing information
about past interactions. This is in itself a large field of research and a combination
with this ontology of argumentation should prove interesting.

4 Conclusions

Argumentation research has produced a large amount of argumentation models,
which are often difficult to compare. In this paper, we have presented a starting
point for argumentation research using semantic web technologies, thereby pro-
viding a underlying platform from which more sophisticated systems can be built.

The provided ontology can now be extended in various ways, to provide
greater power of expression or model additional features such as trust.

References

Rah03. Iyad Rahwan, Argumentation-based negotiation, ArgMAS Proceedings, 2003
McG04. Deborah L. McGuinness, World Wide Web Consortium, OWL Web Ontology

Language Overview , 2004
Kly04. Graham Klyne, World Wide Web Consortium, Resource Description Frame-

work (RDF): Concepts and Abstract Syntax , 2004
Hor04. Ian Horrocks, SWRL: A Semantic Web Rule Language, 2004
Pat05. Peter F. Patel-Schneider, A Proposal for a SWRL Extension towards First-

Order Logic, 2005
Ver05. Bart Verheij, Agentlink Technical Forum Group, An Argumentation Core On-

tology, 2005

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
http://www.w3.org/Submission/SWRL-FOL/
http://www.w3.org/Submission/SWRL-FOL/
http://x-opennet.org/aif/Inputs/aif2005_bart_verheij_1.pdf
http://x-opennet.org/aif/Inputs/aif2005_bart_verheij_1.pdf


Fig. 1. ontology class relations


