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Abstract

Photo-based Augmentation is a growing field in partic-
ular for Industrial Augmented Reality (IAR) applications.
Registration is at the core of every photo-based AR soft-
ware. This alignment of the image to the 3D model coordi-
nate system is usually achieved with fiducial markers. When
a single keyframe is used, the unknown baseline length has
to be estimated in order to superimpose virtual models onto
the image. In this paper, we develop an automatic algo-
rithm to augment the relative pose, estimated using a single
keyframe, into a full pose that will permit superimposition.
This is performed by propagating known 2D-3D correspon-
dences to the target image using perspectively corrected
template matching and followed by a refinement of the es-
timated full pose that combines geometric and photometric
information. The performance and the stability of the pro-
posed method is extensively demonstrated on synthetic data
and its applicability is shown within an industrial AR soft-
ware for Visual Inspection and Documentation.

1. Introduction

Augmented Reality (AR) [2] has progressed over the last
two decades and starts to be applied in different industrial
applications over the recent years. Traditional AR focuses
on augmenting the reality with virtual data. The connec-
tion to reality can be direct with see-through head mounted
displays [16]or indirect using video-stream with video see-
through [17] head-mount or tablet pc [15].These powerful
methods however do not always integrate well in industrial
workflow. Therefore a new trend appeared where instead
of having continuous augmentation only single images are
augmented. One could call this Photo-based AR.
Stricker and Navab [18] augment industrial pictures with
CAD information to help architectural planning. For the
registration, the user manually selects corresponding points
between the image and the model. Appel et al. [1] use
photographs of plants to redesign a CAD model and im-
prove documentation. They use correspondences between
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technical drawings and images to perform the registration.
Pentenrieder et al. [13] are using photo-based AR for fac-
tory planning. They use pictures of a factory to verify if this
factory can be used to fabricate another component for ex-
ample the new model of a car. They use fiducial markers to
register the images to the CAD reference system. Georgel
et al. [8], use natural landmarks to perform the registration
and use AR to find discrepancies between the CAD model
and the actual plant.
In this paper, we present a new method to automatically reg-
ister an image to a CAD model using a single keyframe be-
cause pose estimation using CAD Model [8] is rarely au-
tomatic and hardly handles missing or wrong data [4]. We
use state of the art computer vision techniques to estimate a
relative pose from the keyframe to the image to register. Un-
fortunately, this relative pose lacks one degree of freedom,
the length of the baseline preventing it from being used for
augmentation. We estimate the length of this baseline auto-
matically by using template matching to propagate 2D-3D
correspondences established within the keyframe. The tem-
plate matching searches photometrically correct correspon-
dences while varying the baseline length. The parameteriza-
tion used for the warping handles all perspective distortions.
Then, using this initial estimate, we perform a nonlinear full
pose refinement combining geometric and photometric in-
formation. Our method automatically estimates a full pose
which can be used for direct augmentation.

2. Related Work

Keyframes are commonly applied in tracking for AR ap-
plications to increase efficiency and reliability. Keyframes
are still images that have been pre-registered to the model.
Vacchetti et al. [19] for example uses several keyframes and
local bundle adjustment to obtain a full pose for the current
frame. Similarly, Chia et al. [3] use two or three keyframes
simultaneously to estimate the full pose (i.e. in regard to
the model and not the relative pose to another frame) of the
current image. Stricker and Navab [18] use their previously
registered image to estimate the pose and the change in fo-
cal length/zoom of the camera. They solve the scale prob-
lem by interactively selecting corresponding point between
the image and the model. Platonov et al. [14] uses a set



of pre-registered keyframes to estimate a relative pose for
the current frame. The extension to a full pose is then auto-
matically computed using the 3D model. The real-scale is
estimated based on the depth of triangulated feature points
projected onto the model. Georgel et al. [7] also use a single
keyframe to estimate the relative pose of the target image
and extend it to a full pose by matching reconstructed planes
from the feature points to planar structures in the model.
The novelty of our approach lies in the fact that it only uses
a single keyframe and limited 3D information: a sparse set
of points. Actually we only require one 2D-3D correspon-
dence from the keyframe such a low amount of data from
the CAD model would cause all the previous method to fail.
Additionally, it refines the estimated nonlinear parameters
using both photometric and geometric information from the
images.

3. Theoretical Background
The motion between two calibrated cameras (i.e. cam-

eras with known internal parameters) is described by the es-
sential matrix E, which relates points p from the keyframe
to point q on the epipolar lines l in the target image
q>K−>t EK−1

s p = 0, where Ks (resp. Kt ) is the matrix of
intrinsic parameters for the keyframe (resp. target). This
matrix can be decomposed [10] into the product of a skew
matrix and an orthogonal matrix as follows:

E = [t]×R. (1)

Each matrix E leads to four possible decompositions. This
ambiguity is solved using the points correspondences, be-
cause only the physically correct set of rotation and trans-
lation triangulates the image points in front of the cameras.
Hence, we will from now on suppose that we have access to
the correct decomposition. From (1) we can already grasp
the problem we solve within this paper: t can only be de-
termined up to scale. Therefore, we suppose that t is a unit
vector for which we have to find the correct scaling.
The initial essential matrix is usually estimated using the
8-point algorithm by [10] and is then refined using a non-
linear scheme which minimizes a quadratic geometric cost
function, the so-called re-projection error:

CG (Mi,R, t) =
n

∑
i=1

‖Ksw(Mi)−pi‖2

+ ‖Ktw(RMi + t)−qi‖2 , (2)

with w
(
[x, y, z]>

)
= [x/z, y/z, 1]> being the warping func-

tion, Mi the 3D points triangulation of the correspondences
(pi,qi) and n the number of point correspondences. Note
that this method does not estimate the true scale of the ob-
served structure because this cost is invariant to changes in
scales (∀s 6= 0, CG (sMi,R,st) = CG (Mi,R, t)).
In this the paper we will therefore focus on the estimation of

the unknown translation length/scale s which is necessary to
augment the target image. The standard method to recover
the scale s is to manually set a known 3D point or a known
3D distance. These two methods will be briefly described
in the next two subsections.

3.1. Scale from a 3D point

Using a given correspondence between a point q in the
target image and a 3D point M which satisfies RM+st ∝ m′
with m′ = K−1

t q, the translation scale can be deduced as
follows:

s =−
(
[m′]× t

)> [m′]×RM∥∥[m′]× t
∥∥2 (3)

3.2. Scale from a 3D distance

The standard approach is to use a known 3D distance.
The norm of a 3D reconstructed (using the unit translation)
segment visible in both image is estimated and then the
ratio between the obtained norm and the known 3D distance
gives the scale s. Since RM+ t ∝ m′ we can deduce:[

m′
]
× (zRm+ st) = 0⇒ z

[
m′
]
×Rm =−s

[
m′
]
× t, (4)

with m = w(M).
By defining a = [m′]×Rm and b = [m′]× t, we can express
the depth of a 3D point as:

z =−s
a>b
‖a‖2 (5)

Let M1 and M2 be the triangulation of the two pairs (p1,q1)
and (p2,q2) using R and t. Since s > 0 this leads to:

‖M1−M2‖= ‖z1m1− z2m2‖= s

∥∥∥∥∥ a>1 b1

‖a1‖2 m1−
a>2 b2

‖a2‖2 m2

∥∥∥∥∥ .

(6)
Knowing the ‖M1−M2‖ one can find the scale s of the
translation.

Both of these approaches are neither automatic nor make
use of information linked to the original keyframe estab-
lished during its registration. In the next section, we will
introduce our method that makes use of such embedded in-
formation.

4. Our Method
We henceforth assume that we have access to a num-

ber of correspondences in the keyframe with the model
expressed as (c,C). These pairs of 2D point c and 3D
point C are usually estimated during the registration of the
keyframe. Let l be the epipolar line induced by the point c
in the target image. All points c′ on l correspond to a unique



scale s. Similar to equation (3), this bijective relation is de-
duced using RC+ st ∝ K−1

t c′ = m′ as follows:

∀c′ ∈ l ,
[
m′
]
× (RC+ st) = 0⇒ s =−

(
[m′]× t

)> [m′]×RC∥∥[m′]× t
∥∥2 ,

(7)
this relation is true for all points that satisfy [m′]× t 6= 0.
This would only happen for points on the epipole which
anyway cannot be reconstructed.
Furthermore, if we suppose that C is locally planar and that
n (‖n‖ = 1) is a normal vector to this plane (which can be
obtained from a CAD model), each point C induces a set of
homographies

H(s,πC) = R− s
tn>

d
, (8)

between the keyframe and the image to register, with πC =[
n>,d

]> the plane around C and d being the distance be-
tween the point X and camera center of the keyframe.
For each homography, we have a one to one mapping be-
tween neighbors of c and the neighbors of c′ . Therefore, it
is possible to define an intensity based criterion to match c
to the right c′. Our template matching score f (s) is defined
as follows:

f (s) = SM
(
S ,H−1 (s,πC)(T )

)
, (9)

with S and T being two image patches and SM being any
similarity measure. The template search can be then ex-
pressed as an extremum search on f . This is made possible
because (7) guarantees a unique s for each points of l. So
finding the scale s can be summarized as computing f for
each c′ ∈ l and looking for the extremum of the function.
A schematic of the search is shown in Figure 1. This dis-
crete search is then refined by minimizing a nonlinear cost
that combines both geometric and photometric information
as expressed in the following section.

4.1. Nonlinear Refinement

If the propagated correspondences
(

c′j,C j

)
were added

to the geometric cost (2), it would stay optimal because
it was optimal for (Mi,R, t) and the propagation

(
c′j,C j

)
have been selected to verify Ktw(RCi + st) = c′i. But the
selected scale s is not optimal for (9) because it was sam-
pled over the epipolar lines. Therefore it needs to be refined.

Using a similar approach as [6] which combines geo-
metric and photometric information we create hybrid cost
function that will estimate the full pose.
First we define a photometric cost function based on the
template matching results by:

CP (R, t) =
m

∑
j=1

NC j

∑
X

∥∥∥∥ S (Ksw(X))
− T (Ktw(RX+ t))

∥∥∥∥2

, (10)
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Figure 1. Scale from one propagated 2D-3D correspondence: the
3D point C projects on c in the keyframe and c maps to the epipolar
line l in the target image. The template matching is performed
between the template around c and warped templates on l. The
warp is parametrized using the plan πC and the scale samples.

with NC j being the 3D neighborhood of C j defined by the
plane πC j .
This leads to the following least square minimization prob-
lem:

arg min
Mi,R,t

CG (Mi,R, t)+CP (R, t) . (11)

We would like to emphasize two important facts. First
that such a cost function will be only convex if it is well
initialized. Therefore, it is mandatory to perform the scale
search using the template matching. And second that the
problem’s formulation does not have any gauge freedom
[12] since we are estimating a full pose using real 3D data.
This is one of the main difference to [6] where they have
to force the scale in order to obtain a stable minimization.
In the next section implementation details will be given and
the performance of the approach will be evaluated.

5. Implementation Details
The experiments were all run using Matlab and then

later integrated into our IAR software. The initial rotation
R, translation t (of unit norm) and structure Mi is oriented
(e.g. the points are triangulated in front of the camera) and
is supposed to be optimal for (2). Since we are oriented
we only have to consider positive scale s. The method
is split in three steps. First, the template matching is
performed (i.e. discrete search). The epipolar line is
sampled every 5 pixel. The template size is 32×32 pixels.
The similarity measure used for (9) is the NCC (we search
for a maximum) which handles changes in illumination and
the associated threshold τ = 0.8. Second, an initial scale
is selected. We choose the best scale from the set of scales
estimated from the template matching. This is performed
by applying the cost (9) to all 2D-3D correspondences
using all the obtained scales and by choosing the scale that
maximized the sum of the score (2D-3D correspondences
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Target Image 
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Figure 2. Template Matching Scheme: cyan crosses are Harris corner; blue circles 2D-3D correspondences; pink dot currently used 2D-3D
correspondences which maps to pink epipolar line; and white crosses correspond to the samples. Samples relate to warped templates and
the relative NCC scores at the bottom. The upper graph represents the evolution of the scale (negative scales in red are not considered) and
the lower graph represents the NCC scores over all samples. (Object in green corresponds to the true scale)

with score lower than τ are discarded). This provides an
initial estimate for the refinement and a set of matched
2D-3D correspondences. Finally, the full pose is refined,
and we estimate the full pose based on equation (11). For
the nonlinear minimization we normalize the gray scale
intensity information between zero and one to give similar
importance to DG and DP . The algorithm is summarized
in 1 and a schematic of the process is described in figure 2.

Input: R, t, the image point correspondences (pi,qi,Mi), the 3D-2D
correspondences (C j ,c j) and τ

Output: R̃, t̃ and M̃i
F←K−>t [t]×RK−1

s ; ftotal ← 0; sbest ← 0;
foreach c j do

fmax ← 0; current← 0;
foreach c′ ∈IT ∪Fc j do

Compute s from (7) ;
if (s > 0)&( fmax > f (s,c j ,c′)) then

fmax ← f (s); smax ← s;
end

end
if fmax > τ then

foreach c j′ do
if f (smax,c j ,c′) > τ then

current+ = f (smax,c j ,c′) ;
end

end
if current > ftotal then

sbest ← smax; ftotal ← current ;
end

end
end
if sbest > 0 then

t← sbest t; Mi← sbest Mi % Bring to scale ;

Estimate
(

R̃, t̃,M̃i

)
with{C j} using (11);

end
Algorithm 1: Propagation of 2D-3D correspondences
from a keyframe to target image to obtain a full pose.

6. Results

All the experiments presented in this section are de-
signed to evaluate the precision and stability of the pre-
sented method. First we will focus on synthetic simulations
and then demonstrate the use of the method in industrial AR
application.

6.1. Synthetic Simulations

The experiments are based on a synthetic model which
is formed of 3 textured planes. The motion between the im-
ages is perfectly known and is our ground truth data. Harris
corners [9] were detected on the keyframe and then propa-
gated to the target image using the true motion. At most 154
Harris corners are used during the experiments for visibility
reasons (this number can be smaller). On each plane of the
synthetic model eight 2D-3D correspondences are marked,
each correspondence is link to a normal vector. The num-
ber of 2D-3D correspondences used is at most 24 (if not
specified otherwise) depending on their visibility. Exam-
ples of generated views are visible in figure 2. The changes
in depth of the viewpoints was almost constant across all
experiments (if not specified otherwise) in order to have
a comparable reprojection error between different experi-
ments.
The error of an estimation is measured using the true (i.e.
noiseless) 2D-3D correspondences and the estimated full
pose. We project the 3D points with the estimated full pose
and measure the distances to the 2D points obtained from
the ground truth, the mean of this distance will be our error
model, this is often called the mean target reprojection er-
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Figure 3. Experiments on synthetic data: the red line represents the mean target registration error (RE) after the template search, the green
the RE after the nonlinear refinement, the blue the convergence rate and vertical bars standard deviations. The graphs show the results
of experiments with (a) noise in the 2D-3D correspondences; (b) noise in the 2D-2D correspondences; (c) increasing number of 2D-3D
correspondences; (d) change in scale (from strong zoom-out on the left to strong zoom-in) (e) image noise; (f) image blur.

ror (RE). Whether the algorithm converged will be decided
based on this RE. It is declared that the method converged
if the RE is bellow the noise level plus precision limit: 0.05
pixel (this value is explained in 6.1.1). All the mean RE
plots are based RE that converged. Six experiments were
conducted which will now be explained.

6.1.1 Error in the Keyframe Registration

In order to verify the stability of the method towards mis-
registration of the keyframe, we simulated slightly wrong
alignment between the 3D points and the 2D points. This is
performed by adding Gaussian noise to the 2D points and
then compute the pose of the keyframe. This induced a
small error in the alignment between the model and the im-
age, which includes an error in the orientation of the nor-
mal. We ran these experiments with seven different levels
of noise on one hundred images. The results are summa-
rized in figure 3(a).
The algorithm always converged to good solution with re-
spect to the input noise. The refinement step always im-
proves the result of the template matching. Furthermore,
the resulting RE was small. The experiment also revealed
the numerical limitation of the use of this intensity.A tar-
get registration error bellow 0.05 was rarely achieved. We
speculate that this originates from the discrete method used
to create the images and the loss of information after warp-

ing.

6.1.2 Error in the Relative Pose

In a second experiment, we tested the stability of the method
against an error in the relative pose estimate because it is
more than likely that the feature points used to obtain the
relative pose are localized with some error. In order to sim-
ulate this error, a Gaussian noise was added to the Harris
corner (2D points) in both keyframe and target. This had a
direct impact on the quality of the initial relative pose (even
with the use of the Gold Standard algorithm [10]). We ran
these experiments with seven different noise levels on one
hundred images. The obtained convergence rates and RE of
the approach is summarized in figure 3(b).
The method rarely diverges (up to 4%). We assume that the
algorithm only diverged when the error in the relative pose
was so large that the epipolar lines resulting from the image
points (of the 2D-3D correspondences) miss their true cor-
responding points by far. Again we see that the refinement
step drastically improves the result obtained by the template
matching. Furthermore, in comparison to the previous ex-
periment 6.1.1 the results obtained with the template match-
ing diverge from the refinement step results. This can be ex-
plained by the fact that we use additional information (pho-
tometric) during the nonlinear optimization which corrects
the wrong measurement included.



6.1.3 Stability with respect to Number of 2D-3D Cor-
respondences

We studied the impact of the number of 2D-3D correspon-
dences used for the method. We randomly select a subset
of the 2D-3D correspondences. The threshold for the con-
vergence was set to 1 pixel error because the lower bound
threshold was selected using 24 2D-3D correspondences.
Such a precision however cannot be expected for sparse cor-
respondences. We used one hundreds poses, and the results
are presented in 3(c).
The first comment, that can be drawn from this experi-
ment, is that the number of 2D-3D correspondences has
a direct impact in the convergence rate. We suppose that
the randomly selected 2D-3D correspondences were not al-
ways well visible (e.g. perspectively too distorted to be rec-
ognized in the target image). Such perspective distortion
rarely happens with real images because the relative pose is
often not computable in this case. The second comment is
that the precision of the method is satisfactory even when
only one correspondence is available.

6.1.4 Stability to Scale Change

We then tested the effect of the scale changes between the
keyframe and the target. We sampled poses with five dif-
ferent zoom factors. Again, we used a threshold of 1 pixel
error. The result are presented in 3(d).
The differences in error is the consequence of the varying
scale. When the object is closer to the camera the RE in-
crease (automatically) even if the underlying error in pose
is the same. Often the focal is increased to compensate for
this phenomena; we decided to not apply this idea in order
to let the experiment describe the underlying problem. This
experiment shows that the proposed method is stable even
when the scale factor varies drastically.

6.1.5 Noise and Image Blur

To verify the performance of the approach in actual usage,
one needs to know its stability with respect to noise and
blur. When images are acquired using a camera, noise is al-
ways present because of diffuse illumination, and blur can
occur when the camera is handled by a human and not fix
on a tripod. We perform two experiments. First, we add an
independent Gaussian noise to the intensity of the keyframe
and the target. Second we blur the keyframe and the target.
The blur is performed using an increasing kernel size. Both
experiments were performed on more than hundreds of im-
ages. The convergence threshold for both experiment was
0.5 pixel. The results for the noise is visible in figure 3(e)
and for the blur in figure 3(f).
The noise experiments demonstrate again than the refine-
ment step is crucial to obtain a precise full pose. Further-

more, we can see that the standard deviation of the resulting
error is small which proves that we always reach a stable
optimum even with massive disturbances. This is because
we simultaneously minimize the photometric and geomet-
ric cost over all the observations. The method does a good
job of handling the loss of information due to the blurring
effect. The obtained RE after the refinement, at maximum,
doubles from the non-blurred image (smaller that 0.2 pixel).

6.2. Industrial Application

We implemented the presented method within our Indus-
trial Augmented Reality Software. The goal of the software
is to provide a better documentation of the CAD model of
power-plants and to help performing a discrepancy check
(i.e. verify correctness of the built item compared to the
planned CAD model). Giving access to images of the built
plant offers insights about undocumented features (for ex-
ample electrical wires), misplaced or modified components.
This visualization can be achieved in any CAD software
having texture capabilities to display the images, but such
software will then requires well designed methods to reg-
ister images to the coordinate system of the CAD model.
This was one of the main motivation to develop an auto-
matic method to register images using a single keyframe.

The keyframes were registered using anchor-plates [8].
Anchor-plates are metallic plates embedded in concrete
structures (walls, ceiling and floor) of rectangular shape
used to fix different components. The corners of these
anchor-plates and their corresponding image points are used
as 2D-3D correspondences.The relative pose is estimated
using SIFT points [11], RANSAC [5] and the Gold Stan-
dard algorithm in order to obtain a relative pose. In order
to register an image the user has to select a keyframe.The
method has been successfully used on powerplant’s images
over the past two years. Some results are visible in figure 4.

6.3. Discussion

Experiments demonstrate that the proposed method is
stable during zooming, and is robust to noise as well as blur.
The main reason for such accurate performances is the use
of a well initialized hybrid nonlinear refinement that han-
dles different types of data and therefore can deal with the
erroneous measurements in intensities and/or in 2D coordi-
nates.
An interesting direction for future work could be investi-
gated is the variation of the scale parameter s as a function
of the baseline. The example in figure 2 shows a linear vari-
ation of the scale when the matching point moves along the
epipolar line, but this is not always the case. One could try
to use the monotonicity of the variation along the epipolar
line to perform the search of the scale more efficiently. Note
that the nonlinear 6 DoF estimation could be applied to bun-
dle adjustment when 2D-3D correspondences are available.



Figure 4. Industrial Application: (top) The matching and propagation results: propagated 2D-3D correspondences in pink (left the
keyframe, right the target), unmatched 3D points in yellow; matched features in green; (bottom) The resulting augmentation.

7. Conclusion
In this paper, we present an automatic method to extend

a relative pose to a full pose. The relative pose is suffi-
cient for many Computer Vision applications. However, in
Augmented Reality the full pose is needed to correctly su-
perimpose the virtual object onto the real view of the world.
In such applications, relative pose is of limited use.

The method introduces a homographic warp that is
parametrized by the translation length. It uses an hy-
brid 6 DoF pose estimation which has no gauge free-
dom. The hybrid pose estimation minimizes at the same
time intensity differences and the reprojection error. We
have demonstrated through extensive synthetic experiments
the robustness and precision of the proposed method and
shown its applicability in the context of an industrial photo-
based augmented reality application. Not requiring multiple
pre-registered images or multiple 2D-3D correspondences
greatly broaden the application of keyframe for Photo-based
Augmented Reality.
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