

EyeDE: Gaze-enhanced Software
Development Environments

Abstract
This paper introduces EyeDE, a prototypical system
enabling gaze interaction for assistance in integrated
development environments (IDE). By utilizing an eye
tracking device, we have enhanced an IDE prototype
with gaze-controlled interaction methods for source
code navigation. A qualitative evaluation shows that
users welcome the ability to quickly look up documen-
tation or to jump to method declarations just by looking
at triggers placed in the code. Although inaccuracies
inherent in eye tracking technology and discomforting
sitting positions for users impede successful
implementation of more advanced IDE features, the
interaction paradigm appears to be acceptable within
the software development context and seems promising
as eye tracking technology is being further improved.

Author Keywords
Eye tracking; IDE; Software development environment;
Source code interaction

ACM Classification Keywords
H.5.2. User Interfaces: Input devices and strategies;
Interaction styles; Screen design.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
CHI 2014, Apr 26 - May 01 2014, Toronto, ON, Canada
ACM 978-1-4503-2474-8/14/04.
http://dx.doi.org/10.1145/2559206.2581217

Hartmut Glücker
University of Regensburg
93040 Regensburg, Germany
hartmut.gluecker@student.ur.de

Felix Raab
University of Regensburg
93040 Regensburg, Germany
felix.raab@ur.de

Florian Echtler
University of Regensburg
93040 Regensburg, Germany
florian.echtler@ur.de

Christian Wolff
University of Regensburg
93040 Regensburg, Germany
christian.wolff@ur.de

Work-in-Progress CHI 2014, One of a CHInd, Toronto, ON, Canada

1555

Introduction
Integrated development environments (IDEs) offer a
vast number of tools for developer assistance.
However, IDEs often lack ease of use with regard to
how these tools can be found or activated – which may
be part of the reason why the Eclipse developer team
has recently focused on usability-related enhancements
for their development environment [3]. This finding
indicates that there is a general need for IDEs to
support software developers with using the tools in a
more productive manner and thus constitutes the
motivation for this work.

Furthermore, programmers suffering from repetitive
strain injury (RSI) may benefit from multimodal
development environment setups and possibly even
retain their ability to produce code – which is another
reason why research should also consider accessibility
improvements in the context of software development.
This work presents EyeDE, a prototype utilizing an eye
tracking device to assist programmers during the
development process. We want to simplify reading and
navigating source code by appropriately reacting to
gaze. We propose a design that enables quick and
natural navigation through gaze-controlled menus in
IDEs. The interaction is designed to support hands-free
navigation, not only enabling handicapped developers
to browse the source code, but also preventing able-
bodied developers from repeatedly moving their hands
between the keyboard and the mouse for certain tasks.

Related Work
Enhancing development environments
Introducing a speech recognition algorithm specifically
designed for understanding Java commands, Begel and
Graham [1] successfully integrate speech-based code

synthesis into the Eclipse IDE, providing the missing
counterpart to the reading-focused approach presented
in this work: combining the two modalities may enable
handicapped developers to both navigate through
menus by gaze and to actually create code by speech.

Sharif & Kagdi show that eye tracking can be helpful for
discovering software traceability issues [7]. More
recently, Walters et al. have presented iTrace, an eye
tracking-enhanced Eclipse plug-in that is used for
creating links in software design artifacts like UML
diagrams [9].

Current eye tracking applications
Biedert et al. [2] enrich the reading experience of
digital books with eye tracking technology. Analyzing
the readers’ gaze, the project Text 2.0 determines their
current reading position in order to display contextual
information such as figures or images in novels. The
application also offers a “skimming mode” that grays
out stop words when the user is glancing over the text.

A large body of eye-tracking-related work is focused on
making applications accessible for users who are unable
to use their hands. For instance, van der Kamp [5]
successfully implements a multimodal painting
application that utilizes both speech recognition and
gaze control to let users draw without using their
hands.

The “Midas Touch” problem with eye tracking
Due to the fact that it is hard for a system to
distinguish between a user’s intention of triggering
functionality and the aim of exploring the user interface
(UI) with their gaze, using eye tracking technology has
a major design tradeoff that is generally referred to as

Work-in-Progress CHI 2014, One of a CHInd, Toronto, ON, Canada

1556

the “Midas Touch” issue [4]. It arises when the visual
exploration of the UI activates gaze-based functionality
without the user’s consent. While there are techniques
to avoid this situation, they usually tend to result in a
less natural way of interaction. Most ideas to alleviate
the Midas Touch problem are derived from two main
mechanisms originally proposed by Jacob [4]. He
suggests that a gaze-based event should only be
triggered when:

• the gaze remains stationary in the area of interest
(AOI) for a predefined dwell time threshold, and/or

• a key is pressed on the keyboard while the user is
focusing the AOI with their gaze.

Since these methods are non-exclusive, Jacob suggests
combining both. The dwell time threshold can be
perceived as slow and exhausting whereas a key press
can speed the selection up for experienced users.
Zhang & MacKenzie have shown that eye/click
interaction can be faster than mouse-based positioning
and interacting in a GUI [10]. As far as gaze-based
menu controls are concerned, Urbina et al. [9] present
a novel alternative to Jacob’s suggestions: Using a pie-
like menu structure, one can trigger the selection of a
“slice” by moving the gaze from the center across its
border. Even though this method was determined as
faster and more accurate, the test subjects did not
consider it as intuitive as selection based on dwell time.

Application Overview
In this section we describe the features the EyeDE
prototype offers, the technical foundations of the
prototype and the reasoning behind the design
decisions we made.

Application features
EyeDE is a prototypical code editor featuring only a
small subset of the capabilities of an IDE. For the time
being, our work focuses on hands-free navigation for
reading and understanding code. Therefore we have
included the following features:

• jump to method declaration (resp. jump back)
• documentation lookup
• locally expand method body (resp. collapse method

body, see Figure 1)
• switch between files (see Figure 2)
• highlight occurrences of variable/method names

(see Figure 3)
• outline / mini-map navigation
• expand / minimize the project explorer

We consider the first four features invasive, that is,
they disrupt the workflow by either bringing up new
elements in the user interface or performing an
unexpected action (e.g. jumping to a method
declaration when only reading a method call). The
latter three features are triggered without the need for
additional confirmation since they are either subtle,
expectable and/or easily reversible.

A menu for switching files appears when the user’s
gaze focuses the file names in the tab bar (see Figure
2). Looking at a method call will yield a menu with
three items (see Figure 4) for either jumping to the
method declaration, looking up its JavaDoc comment or
to locally expand the method to see its body “inline”.
By gazing at the mini-map or methods listed in the
outline, the application scrolls to the corresponding
position in the code. Whenever a variable or method is
being focused for a short time span, the token and all

Figure 1. Using local expand to view
a method's content.

Figure 2. Users can switch files
using their gaze.

Figure 3. Further occurrences of a
token are highlighted upon gaze.

Figure 4. Contextual menu activated
by focusing the method call.

Work-in-Progress CHI 2014, One of a CHInd, Toronto, ON, Canada

1557

of its other occurrences within the document are subtly
highlighted (see Figure 3). Finally, looking at the
project explorer (that is collapsed to save more space
for the actual source code) will expand it to its full
width to make the file tree readable. Looking away
returns it to its previous state.

Application architecture
The application is built upon the following components:

• eye tracking server (with periphery)
• fixation detection server
• client application with code editor

The client will only receive gaze coordinates from the
fixation detection server and is not coupled to the
heuristics that are being used in the detection
algorithm. EyeDE utilizes the RED-m eye tracking
device by SensoMotoric Instruments (SMI).1 The iView
X software constitutes the eye tracking server
component. Its API can be accessed using the iView X
SDK which is available for C#, C++ and Python.

The fixation detection server functions as “man in the
middle”, communicating with both the eye tracking
server and the code editor client. Via the iView X API, it
regularly polls the current gaze data, uses a weighted-
mean algorithm [6] to reduce jitter, and sends the
smoothed data (see Figure 5) to the JavaScript client
using a WebSocket connection established with the
Tornado package for Python. 2

1 http://www.smivision.com/en/gaze-and-eye-tracking-

systems/products/redm.html
2 http://www.tornadoweb.org

Our primary research goal is to examine both the
usefulness and usability of eye tracking in the software
development context. Within the scope of this
prototype, a browser-based JavaScript client will suffice
as long as the interface still “feels” like a code editor.
For this purpose, the open source software CodeMirror3
is used. This component supports various basic features
available in code editors such as syntax highlighting,
code indentation and a programming API.

Application design
In a visual environment controlled by gazes, it is
important to avoid distractions as they may cause users
to focus on them either voluntarily or accidentally.
Since the user interface consists of several objects
reacting to gaze, such distractions could potentially
result in unwanted triggering of actions. Besides the
display of source code, the EyeDE UI therefore only
utilizes light gray tints with low contrast (see Figure 7),
with the only highlighting color being a light blue for
displaying the status of certain actions.

We regard the cautious use of colors as important so
that our animated contextual menus do not draw too
much attention to themselves while still being
noticeable. Dwelling over certain UI objects opens the
contextual menu with selection options that are
designed to resemble “bubbles”. When the user gazes
at such a bubble, a blue arc will keep filling its outer
border (see Figure 6) until the user averts the gaze
from the bubble. Once the filling animation is complete,
the corresponding action is triggered.

3 http://www.codemirror.net

Figure 6. The “local expand” bubble
is being activated. Upon activation, it
emits a wave while the other bubbles
fade out.

Figure 5. Results of the smoothing
algorithm proposed by [6].

Work-in-Progress CHI 2014, One of a CHInd, Toronto, ON, Canada

1558

The contextual menu adds another layer to the dwell-
time-based selection mechanism: At worst, exploring
the UI can cause the bubble menus to pop up or trigger
minor actions like occurrence highlighting. Invasive
actions, however, can only be triggered by explicitly
gazing at a bubble.

Evaluation
In order to test the interaction paradigm, we invited
eight participants from different software development
backgrounds to take a 15-minute test and ask them to
share their subjective impressions with us after using
EyeDE. Out of the eight participants, four wore glasses
and a fifth was cross-eyed. Except for one wearer of
glasses, none of the visually impaired passed the initial
tutorial section of the application due to severely

skewed calibration results. The remaining four
participants had to re-calibrate the device a few times
to gain gaze control over the application. This issue
caused some frustration and had a large impact on the
user experience.
The remaining four participants were instructed to
understand what an intentionally obfuscated JavaScript
program did without navigating with the mouse or
keyboard. In a pilot study, major issues in the
interaction design were detected and addressed.
Participants who did not use all of the EyeDE’s features
to accomplish the task were then asked to try each of
the remaining features.

During the interview part of the tests, we questioned
the participants about their experience using EyeDE
and how it could be improved. All in all, they described
their experience as interesting and intuitive. We
determined that they sometimes felt the need to skip
the dwell time – especially when the gaze data
fluctuated due to misrecognition. Therefore, as
suggested by Jacob [4], we finally implemented a
mixture of both dwell-time- and key-press-based
selection mechanism. When the Alt key is pressed while
the target bubble is being focused, it will be activated
immediately, skipping the remaining dwell time. With
respect to the misrecognition problem, we will imple-
ment a “magnetic aiming aid” for future releases.

Some participants remarked that, while reading code,
they would expect to be able to lean back and view the
code from afar. Gaze controls would be valuable in that
scenario as the mouse or keyboard are not required to
navigate through files. However, the eye tracker
required the users to stay seated in a distance of
approximately 50 to 70 centimeters to the device.

Age Amount

older than 40 1

30 - 40 5

24 - 29 1

18 - 23 1

Table 1. Participant age distribution.

Figure 7. EyeDE UI overview.

Work-in-Progress CHI 2014, One of a CHInd, Toronto, ON, Canada

1559

Future Work and Conclusion
We have presented EyeDE, a prototype of a gaze-
controlled software development environment. Our
system enables users to perform code navigation tasks
in an editor by gazing at custom triggers.

Despite the issues inherent in current eye technology,
our preliminary qualitative study shows that this
interaction method may enhance the software
development experience. Future work includes the
following fields:

Gaze-enhanced IDEs
Our evaluation shows that using gaze control for code
navigation appears to be perceived as natural. In future
work, we will broaden the scope of this study, both in
terms of adding more gaze-based IDE features to the
software and conducting further usability tests.

Multimodal IDEs
As we pointed out earlier, combining and integrating
both speech recognition and eye tracking into IDEs may
enable handicapped software developers to make full
use of a full-value development environment.

References
[1] Begel, A., & Graham, S. L. An assessment of a

speech-based programming environment. In Proc.
VL/HCC 2006, 116-120.

[2] Biedert, R., Buscher, G., Schwarz, S., Hees, J.,
Dengel, A. Text 2.0. In CHI 2010 Extended
Abstracts, 4003-4008.

[3] Hou, D., & Wang, Y. An empirical analysis of the
evolution of user-visible features in an integrated
development environment. In Proc. CASCON 2009,
122-135.

[4] Jacob, R. J. Eye movement-based human-computer
interaction techniques: Toward non-command
interfaces. Advances in human-computer
interaction, 4, 1993, 151-190.

[5] van der Kamp, J. Gaze-Based Paint Program with
Voice Recognition, 2010 (Dissertation).

[6] Kumar, M. GUIDe saccade detection and smoothing
algorithm. TR Stanford CSTR, 3, 2007.

[7] Sharif, B., & Kagdi, H. On the use of eye tracking in
software traceability. In Proc. TEFSE 2011, 67-70.

[8] Urbina, M. H., Lorenz, M., Huckauf, A. Pies with
EYEs: the limits of hierarchical pie menus in gaze
control. In Proc. ETRA 2010, 93-96.

[9] Walters, B.; Falcone, M.; Shibble, A.; Sharif, B.
Towards an eye-tracking enabled IDE for software
traceability tasks. In Proc. TEFSE 2013, 51-54.

[10] Zhang, X., MacKenzie, I. S. Evaluating Eye
Tracking with ISO 9241 - part 9. In Proc. HCI
2007, 779-788

Work-in-Progress CHI 2014, One of a CHInd, Toronto, ON, Canada

1560

