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Deformable 2D-3D Registration of Vascular
Structures 1in a One View Scenario

Martin Groher*, Darko Zikic, and Nassir Navab

Abstract—Alignment of angiographic 3D scans to 2D projec-
tions is an important issue for 3D depth perception and navigation
during interventions. Currently, in a setting where only one 2D
projection is available, methods employing a rigid transformation
model present the state of the art for this problem. In this work,
we introduce a method capable of deformably registering 3D
vessel structures to a respective single projection of the scene. Qur
approach addresses the inherent ill-posedness of the problem by
incorporating a priori knowledge about the vessel structures into
the formulation. We minimize the distance between the 2D points
and corresponding projected 3D points together with regulariza-
tion terms encoding the properties of length preservation of vessel
structures and smoothness of deformation. We demonstrate the
performance and accuracy of the proposed method by quantitative
tests on synthetic examples as well as real angiographic scenes.

Index Terms—Angiography, deformable registration, 2D-3D
registration.

I. INTRODUCTION

NGIOGRAPHIC imaging is a widely used technique for

visualization of vessel anatomy in diagnosis and treat-
ment. During most abdominal catheterizations, contrasted 2D
projections from one view are acquired by a C-arm for catheter
guidance and treatment monitoring. A 3D angiographic scan!
is usually acquired preoperatively to assess the region of in-
terest and identify possible complications for the treatment. This
2D/3D setting is sketched in Fig. 1. In clinical practice, the avail-
able 3D information is currently not brought to the interven-
tional room. In some interventions, 3D intraoperative data is
available from rotational angiography. This data set, however, is
currently not used for guidance or navigation, where 2D projec-
tions are favored since they capture the temporal changes com-
pared to a static 3D scan. Only guided by images from one view,
it is often very difficult for the physician to find a path through
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Fig. 1. Visualization of the 2D/3-D C-arm/patient scenario. The 3D vascula-
ture is to be deformably registered to the 2D projection image. The blue line in
the 2D digitally subtracted angiogram (DSA) visualizes the projected centerline
of the rigidly registered 3—D vasculature. This projection is visibly deformed to
the projection in the DSA due to breathing motion.

the patient’s vessel system. This is mainly due to overlap of
vessel structures and breathing deformation.

An accurate registration of 3D to 2D vasculature would allow
for intraoperative 3D roadmapping or catheter tip backprojec-
tion. With this 3D enhancement of angiographic interventions,
an increase in depth perception can be achieved while the
amount of injected contrast agent and radiation dose can be
reduced.

In abdominal or thoracic regions that are subject to deforma-
tion, this registration cannot be established by a mere rigid or
affine transformation model (for an example, see Fig. 9). In-
stead, it is necessary to create a 3D deformation field that locally
deforms the 3D vasculature such that its projection matches the
2D vasculature.

For 3D-3D registration of vascular images, methods have
been developed to compute the deformation field from sparse
correspondences that are determined manually or through rigid
prealignment [1], [2]. However, the computation of a dense 3D
deformation field from sparse 2D-3D feature correspondences
is in general an ill-posed problem. The displacement of a point
along the projection ray cannot be computed without additional
constraints, compare Figs. 2 and 3.

Currently, methods for 2D-3D alignment of vascular images
use a rigid transformation model discarding local motion. Such
algorithms tend to be robust against deformation changes of
vessel structures but do not solve for these deformations, leaving
a considerable amount of misalignment, which can be, as re-
ported for e.g., liver, up to 3 cm [3].

0278-0062/$25.00 © 2009 IEEE



848

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 28, NO. 6, JUNE 2009
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Fig. 2. Visualization of the method results on a simple synthetic example, with the window-in-window presenting the 2D projection of the respective 3D structure.
(a) Is the input 3D vessel graph to be deformed while (b) shows a vessel graph, which was used to generate the input 2D projection image. Hence, (b) presents the
ground truth for the deformation of (a). The camera is positioned on the right side of the images, such that the shape change in ray direction is not observable from
the 2D projection image. (c) With the naive approach using only the distance measure from a single projection, it is not possible to recover the full 3D deformation
since there are no constraints along the projection rays. (d) Employing the length preservation and diffusion regularization terms present additional constraints and

thus allows for correct deformation also in the direction along the projection rays.

I

Fig. 3. Tllustrates the reduction of admissible solutions for one node along the
projection ray, by using length preservation. For the fixed node X;_, the po-
sition of the node X; is constrained to two possible solutions, X! and X2, if
the distance between X;_; and X; is assumed constant. Without the length
constraint, every position along the ray presents a solution, some of which are
visualized above.

In order to overcome the shortcomings of the rigid approach,
we propose a method for computing a meaningful deformation
of a 3D structure from a single 2D projection. Our method com-
bines the correspondence-based approach and the ideas from
intensity-based registration, where the registration problem is
defined as a minimization of an energy consisting of a differ-
ence measure and regularization terms, which incorporate the a
priori knowledge about the problem, see Fig. 2.

The difference term used in our approach penalizes the dis-
tance between the projection of 3D points from the input vascu-
lature, represented as nodes of a centerline graph, and the cor-
responding points from the 2D projection image (Fig. 4).

Minimizing only the difference term results in what we refer
to as the Naive approach, which is not able of recovering the
deformation in the projection direction and thus can lead to un-
natural results. In order to be able to compute the 3D displace-
ment, additionally to the difference, we employ a combination
of two regularization terms, which model assumptions about
vessel structures and thus yield more realistic deformations.

initial graph structure

|p 4& resulting graph structure

H ——> difference measure
induced movement

D{_ , length preservation
induced movement

Fig. 4. 2D illustration of the effect of the difference measure and the length
preservation term on the motion of the vessel structure. The difference term D
measures the distance in the 2D projection image [,,. The length preservation
penalizes the change of length of the 3D graph G.

The first term describes the assumption that the length of ves-
sels does not change heavily inside the human body and penal-
izes large changes of the vessel length. This term is important
since it presents constraints in 3D space and thus reduces the
number of solutions for one node from infinitely many to two
solutions along the projection ray, if one of the neighbors is as-
sumed fixed (Fig. 3). Also, in our experiments the minimization
of this term by steepest gradient descent results in the nearest so-
lution to the initial position of the respective point. Fig. 4 illus-
trates the idea of using the difference term together with length
preservation.

However, graphs that are extracted from real vessel struc-
tures can have many nodes and large deformations. Here, the
length preservation term has the drawback that the behavior is
too local. Although the length preservation itself is performed
successfully, in these cases the property that the nearest solution
to the initial position is computed introduces unnatural bends in
the vessels, thus leading to unwanted results, compare Fig. 5. In
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Fig. 5. Demonstrates the effect of joint usage of the length preservation and
the diffusion regularization term. (a) Input 3D image. (b) Result with length
preservation. (c) Result with length preservation and diffusion regularization
clearly produces a more natural result. (d) Ground truth.

order to counteract this effect, we impose a smoothness condi-
tion on the resulting displacement field. To this end, we employ
the Diffusion regularization term [4], which is often used in in-
tensity-based image registration.

So in summary, our method enables meaningful 3D deforma-
tions of 3D vessel structures based on a single 2D projection of
the same structure. To the best of our knowledge this is the first
time that this problem is addressed in the field of medical image
processing.

A. Relation to Prior Work

There is a considerable body of research on rigid 2D-3D reg-
istration of vascular images, which however mostly addresses
rigid structures, for example in neurosurgery, see [5]-[13]. For
the case of abdominal or thoracic 2D-3D image alignment, there
exist some methods, which are supplemented by gating infor-
mation or robustness against deformations [14]-[17]. However,
although robust to local transformations, these methods still use
a rigid transformation model and do not account for the occur-
ring deformation.

Within the context of registration of two or more 2D projec-
tions to an atlas or statistical model of bone anatomy, 2D-3D
deformable registration has been addressed by Fleute ez al. [18],
Benameur et al. [19], Yao et al. [20], Zheng et al. [21], and Tang
et al. [22]. These methods do not focus on vessel anatomy and
do not cope with a single view scenario.

Regarding the usage of the constraint of length preservation
of vessel structures for image registration, to our knowledge,
there is no previous work in the literature.

In the robotics and graphics community, computing the 3D
pose of a model from a 2D image is regarded as an inverse kine-
matics problem (see e.g., Grochow et al. [23] and references
therein), which is somewhat related to our topic. However, the
model which is used in these approaches often just has a very
limited number of degrees-of-freedom (DOF) unlike our model,
where each feature point introduces 3 DOF.

II. METHOD

The basic idea of the proposed method is to use a difference
term and supplement it by regularization terms which incorpo-
rate a priori knowledge about the problem and thus impose con-

straints along the projection rays, which are needed in order to
render the problem well posed.

Having modeled the problem this way, the solution is com-
puted by using an optimization method of choice.

In Section II-A, we first briefly describe the setting for the
algorithm and the performed preprocessing steps. We go on by
presenting notation and introducing structures we use in Sec-
tion II-B. Section II-C will introduce our core model, which
is split into difference term (Section II-D), length preservation
(Section II-E), and regularization (Section II-F). An algorithmic
summary of our model is given in II-G. For a better under-
standing of the model, we assume correspondence information
to be given in Sections II-C-II-G. In Section II-H we extend our
algorithm by an iterative assignment of correspondences using
a closest-point criteria. We summarize the overall algorithm in
Section II-I before experimental setups and results are presented
in Section III.

A. Setting and Preprocessing

As input for our method we use an extracted model of 2D and
3D vasculature, as well as a feature-based rigid prealignment in
a calibrated setting? yielding a projection matrix. All of these
steps have been previously presented in the literature and are not
within the scope of this paper. A graph model is created in both
2D and 3D from a region growing step yielding vessel segmen-
tations, followed by topological thinning and bifurcation detec-
tion as described in [24] and [25]. A rigid 2D-3D registration
is computed by distance minimization of 2D and projected 3D
centerline curves as has been successfully applied to vessels (see
e.g., [6], [15]) solving for a projection matrix. 2D and 3D vessel
systems are rather different due to local and global contrast in-
jection protocols and segmentation errors. Thus, assigning point
correspondences is not straight forward even if a projection ma-
trix is known. In the first sections (Sections II-C-II-G), how-
ever, we assume corresponding information to be given. In Sec-
tion II-H, we incorporate the computation of 2D-3D correspon-
dences into our algorithm by iteratively updating an assignment
matrix, which stores correspondence probabilities of 3D and 2D
points as well as outlier information.

B. Preliminaries and Notation

We model vessel structures as directed graphs G?¢ =
(V4, E?), with a set of n nodes V¢ C R? and the connecting
edges B C V4 x V. Here d € {2,3} denotes the dimension
of the graph. For the following, refer also to Fig. 6.

The nodes are classified either as bifurcation nodes V¢ or
sampling nodes V2, such that V¢ = VAU V2 and § = V4 N
V2. While the bifurcation nodes express the topology and the
rough geometry of the vessel tree, the sampling nodes are used
to describe the geometry of the vessel segments in more detail.

The bifurcation nodes are abbreviated by B and are identified
with their spatial coordinates, such that B € V.

We denote the sampling nodes by X in 3D and x in 2D and
again identify them with their spatial coordinates.

2Meaning that intrinsic parameters of the intraoperative imaging device are
given. Also, image distortion can be assumed to be absent due to flat-panel de-
tector technology.
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Fig. 6. Tllustration of the used graph structure.

The correspondences between the 3D and 2D points are rep-
resented by C' C V3 x V2.

We define a vessel segment II; ; as a path between two neigh-
boring bifurcation nodes B; and Bj, containing all sampling
nodes and edges between B; and B . The number of nodes in
IL; ; is m; ; and the number of edges is, respectively, n; ; + 1.
The sampling nodes are indexed relative to the vessel segment
II; ; starting from 1 to n; ;, compare Fig. 6.

The deformation function is encoded by a set of 3D displace-
ment vectors ¢ € R**™ centered in the n corresponding graph
nodes. The displacement at the ith node X; is denoted by ¢;,
such that the final position of the node is Y; = X; + ¢;.

We also employ a dense version of the displacement func-
tion, which we denote by ¢rps. We obtain ¢rpg from ¢ by
interpolation using thin-plate splines (TPSs) [26]. Interpolating
as well as approximating TPS have been successfully applied
in deformable registration of medical images, see for instance
[27], [28], the latter one being a good introductory reference. In
our work we merely use the TPS as an interpolation scheme, i.e.,
to create a dense displacement field for assigning displacement
values to nodes for which no displacement vectors are defined.3

For projections we use a standard pinhole camera model with
the principal ray in the direction of the positive Z-axis.

C. Model

The deformable registration process is now described as a
minimization of the energy function £ with respect to the dis-
placements ¢ of the vessel nodes in order to get the estimate
of ¢, that is

¢ = argmin & (1)
®
with the energy function
&=D+aSL+BSs 2)

where the energy € : (G3,G2%,C, p) — y € R consists of a
difference term D : (G3,G?,C, ¢) — y € R and regularization
terms Sz, : (G3,¢) — y € R for length preservation of the
vessel segments, and Sg : ¢ — y € R for smoothness of
the displacement field. For brevity, we will drop the function

3In order to simplify the implementation, correspondences are computed only
for sampling nodes, and thus also the energies are only evaluated there. This
technical detail is due to the need to consider predecessor and successor nodes
in some parts of the algorithm. Omitting the bifurcation nodes, which often have
more than only two neighboring nodes, facilitates the implementation.
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arguments in the remainder of the paper. The positive scalars a
and (3 control the influence of the respective terms.

In the following, we present the energy terms from (2). We
also give the respective derivatives which are used in the gra-
dient descent optimization scheme.

D. Difference Measure

The difference measure D which drives the registration
process penalizes the distance between the projection of 3D
points from the input graph and the corresponding 2D points
from the input projection image.

Given point correspondences C' with a single correspondence
C; = (Xi,x;) and a projection function f : R* — R2, we can
define the distance measure

1 n
D= gZHXi_f(Xi‘F‘Pi)H?' 3
i=1
Here, f : R®> — R? is a projection function
. . . AT
7(X) = (pIX/pi X, pI X/p] X) “

where p{ , pJ and p4 constitute the row vectors of the projec-
tion matrix P € R3** and X = [XT,1]" is the homogeneous
4-vector representation of the 3D point X.

For the minimization according to the model (2), the deriva-
tive of D with respect to . is needed. By using Y, = X + vk
the gradient is given by

oD 2 T

—— =_Z - f(Y J 5

Don n(Xk f(Yx) Ji (5)
where J;, € R2*3 is the Jacobian of f with respect to ¢y, given
by

1
Jp = —
(p72)
. . N a4
pup;—»,r\fk - p31p1T¥k p21P;,r¥k - P31P;¥k
X| pr1opg Yi — p3oP| Yi  poopy Yi — psaps Yi (6)

p13P3 Yi — P33P Yr  p23P3 Yi — P33Py Yk

where p;; denotes the entries of the projection matrix. For a de-
tailed derivation of 9D /d¢;, please refer to the supplementary
material.4

E. Length Preservation Constraint

Since vessel structures are in general enclosed by soft tissue,
for example inside liver, and breathing motion is limited to a cer-
tain magnitude, the change of length of the vessels is limited. We
model this observation by imposing a soft length preservation
constraint on the single vessel segments. Thus, we do not im-
pose constant lengths, which would be a too restrictive and un-
natural assumption in the given setting. Since the vessel length
is defined in 3D space, this constraint is able to induce a defor-
mation orthogonal to projection rays, compare Fig. 4.

4http://campar.in.tum.de/personal/groher/tmi2d3ddeformable/
groher2009tmi_suppMat.pdf
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We define the terms d; () and d; (), which measure the
length of the edges connected to the sampling node X; for a
given set of displacements ¢ by

d; (o) =Y: = Y;4|? (7
and

df (¢) =IY: = Yit]? ®)

where we once again set Y; = X; + ¢;, compare also Fig. 6.
The initial length of the edges connected to X; is now given by
d; (0) and d; (0) where 0 is the zero displacement field.

Now we can define a length preserving cost function as

d7 (0) —d ()" |di(0) = df ()|
d; (0) di(0)

2

n

1
SL:gZ

i=1

©)

which penalizes the relative deviation from the initial length of
the two edges which are directly influenced by the -th node.
The derivative of Sy, with respect to ¢y, reads

89S, -8
872 = — [ (Yo = i) + 1 (i - Y1) (10)
with
_ 4 (0) —d; (v) L+ di0) = df ()
I, = —d;(O) and [;] = —dZ(O) (11)

The evaluation of the derivative of the length preservation
term is performed independently on single vessel segments II,
since for the computation, ordered correspondences and nodes
with a left and right neighbor each are needed. Please, refer to
the supplementary material* for a more detailed derivation of
as L / (9(,0 k-

F. Diffusion Regularization

In order to impose a smoothness constraint onto the displace-
ment field, we employ the regularization term S.

We implemented one of the common choices frequently used
in intensity-based registration, the so-called diffusion regular-
ization term (compare e.g., [4]). Any other standard regulariza-
tion term, like bending energy, compare e.g., [29], can be used
instead.

For defining the smoothing regularization energy, we employ
the interpolating thin-plate spline model ¢ pg [26] to represent
a continuous version of the displacement function, which is ex-
plicitly represented at the graph nodes by the vectors (;

<PTPS
xr T .’L'
( A X o XK = X)) X
( (.Z‘Z)_i_A(LlJQ) X+Zk:1 wkl"2 HXk_X“)_X(Iz)
T T n T x
(a7 + A "X T X=X ) X
(12)
-
with A@) = [a{™) a§™) ™))" where the scalar values a;
and the vectors wj, constitute the parameters of the TPS, which

are computed to match the n given displacement values at the
nodes of the graph, located at points Xj.

The diffusion regularization cost function is then defined as

(r2) (X 2

Ss=— ZHV TPS TPS Xi)
(13)
The derivative of S is
dSs dSg
= (14)
dpr,  prps(Xi)
2
= _;AQDTPS(Xk) (15)

2 - ) ;

= [T, AefEl (%), AviRl(X4)] (16)
where the Laplace operator A with A(p](c‘i) = Oy a, wéd)

Oys 901(:1) + Opyay <p§cd) is evaluated analytically by computing

A‘P(TP%(X) to

_ ()
ZZ‘” X X||E

i=1k=1

(x-x)’

K0T X
7)
The € in the above equation is a small positive scalar, re-
sulting from an approximation to the second norm ||X]|le =
VXTX + ¢, in the TPS model from (12) in order to ensure its
differentiability.

G. Optimization Scheme

By using all components of the cost function £ together with
their gradients, we can give an algorithm based on gradient de-
scent optimization. Since our parameter space has a rather high
dimension, the gradient descent optimization can get stuck in
local minima. In order to avoid this, we incorporate a relaxation
technique into our optimization. In an outer loop, the smooth-
ness parameter (3 is gradually decreased while the inner part
minimizes the energy with a given 3 in each iteration. The in-
tuition behind this process is to impose a certain rigidity to the
transformation if we are far away from the optimum, which is
gradually relaxed the nearer we come to the global minimum
in order to allow more local transformations. The relaxation
process is controlled by a parameter T;,,date, Which is usually
set between 0.9 and 0.99. See Algorithm 1 for the pseudo code
of our method.

As optimization method for Algorithm 1 we tested a steepest
gradient descent as well as the Broyden—Fletcher—Gold-
farb—Shanno (BFGS) optimizer [30]. The latter one brought
a considerable speedup, which will be discussed in Sec-
tion IV. For BFGS optimization we used the publicly available
C++-routines of Jorge Nodecal.5

The values for the coefficients « and 3 are chosen empirically
in the current implementation. For more details on parameter
selection and definition of convergence criteria, please refer to
Section III-A.

Fig. 7 shows an exemplary iteration process of the 2D-3D reg-
istration algorithm with steepest gradient descent optimization
on a synthetic example. Note that the upper and lower part of
the “C” shape are bent in the wrong direction after 85 iterations

Shttp://www.alglib.net/optimization/lbfgs.php.
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Fig. 7. Exemplary iteration process of the proposed 2D-3D deformable regis-
tration method with steepest gradient descent optimization. In each figure the
yellow transparent surface represents the ground truth, the green line represents
the centerline of the deformed 3D graph. The 2D graph to which the 3D graph
is to be registered is not shown. The input setting is visualized in (a). The inter-
mediate result is shown after 85 (b), 1012 (c), 3674 (d), and 7670 (e) iterations.

ALGORITHM 1

Algorithm 1 Deformable 2D-3D Registration with Additional
Constraints

Given the input graphs G® and G?, ordered point correspon-
dences C; = (X;,x;), and a projection matrix P,

initialize parameter T'ypdate, Binit> Bfinal

1:

2: B Binat

3. repeat

4:  //perform optimization

5.  repeat

6: calculate VE = VD + aVSy + fVSs

7 update displacements via a gradient descent step
8: update the 3D TPS and deform whole graph
9:  until convergence
10:  //update
11: B = Tupdatc: * 8
12: until 8 < Brina

[Fig. 7(c)], but the algorithm recovers from this situation as can
be observed in Fig. 7(d) and (e).

H. Solving for 2D-3D Correspondences

We now extend our model to cope with a more general setup
where corresponding information between 2D and 3D graph
points is not known a priori.

There are many approaches to solve the correspondence
problem while computing a transformation, possibly the most
popular being the iterative closest point (ICP) [31], [32], which
has been adapted and applied to medical data rather extensively
[33]-[35]. We choose the model of Gold and Rangarajan [36],
which is a soft version of the assignment as proposed by the
ICP, and can be nicely integrated into our model.
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Given a variable m;;, where

- _J 1, ifx; corresponds to X;
Mij = {0, otherwise (18)
our energy can be extended to
E=D+aS.+p3Ss —nP (19)
where the new difference term is defined as
n N
D= mij Ixi = f(Xj+e)° (20)
i=1 j=1
and a penalization term
n N
P= Z Z mij (21)

i=1 j=1

which avoids trivial solutions. Our optimization problem thus
becomes

(¢',M') = argmin & (22)
©,M
with additional parameters in the assignment matrix

M = (m),-j.

In the standard ICP, m,;; is a binary variable, which can only
take the values of 0 and 1. If this variable is directly put as a
parameter into our optimization, many local minima arise and
the optimization is likely to fail. Gold and Rangarajan proved
that the transition of m;; from a binary to a random variable
m;j € [0;1], which takes the values

Il — ]2

2v 3)

m;; = Vexp
will avoid the introduction of too many local minima [37].

To guarantee a 1-to-1 mapping, the assignment matrix M has
to be doubly stochastic, i.e. the constraints Z?:ll m;; = 1 and
Zj\;tl m;; = 1 must be met, which can be approximated by
row and column normalization [37].

Outliers are handled by introducing a slack row and column
to ensure the constraints while being able to assign small proba-
bilities to all entries of a row or column respectively that do not
sum up to 1.

To further “convexify” the cost function, a deterministic an-
nealing schedule is proposed, which renders the final energy

E=D+aS;+(Ss—nP+7L (24)
subject to the above constraints where, L =
>y Zj\;l m;;logm;; is a so-called entropy term

and 7 the annealing parameter. The energy is minimized by
an alternating scheme, where each iteration first applies the
softassign given a transformation followed by an update of
the transformation given correspondences [36]. An outer loop
controls the annealing by gradually decreasing the annealing
parameter 7.

This method of “softly” assigning correspondences combined
with deterministic annealing has been successfully applied in
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monodimensional rigid point-based registration [37], and has
been extended to nonrigid registration as proposed by Chui and
Rangarajan [38], who, to this end, introduce a TPS transforma-
tion model. Similar to our approach, they gradually decrease
the smooting regularization parameter () according to the an-
nealing scheme in order to allow for more local transformations
if the algorithm approaches the global minimum.

1. Overall Algorithm

We adapt the update of correspondences to the projective
case, yielding the final algorithm, which solves for both 2D-3D
transformation and correspondences, see Algorithm 2. The
parts, which have been taken from Algorithm 1 without change
are held in light gray.

For criteria on convergence please refer to Section ITI-A. It
should be emphasized that the row and column normalization
includes the slack row and column to allow for outliers. Please
note that the update of the assignment matrix takes the pro-
jection into account and thus evaluates the Euclidean distance
in 2D. Moreover, the 2D correspondences used to compute the
transformation are a mixture of all 2D points depending on their
respective probabilities (compare [38]).

III. RESULTS AND EVALUATION

In order to validate our results, besides visual inspection, we
compute two different quantitative error measures.

The first measure is the 3D euclidean distance between the
nodes of a given graph and the corresponding ground truth (GT)
structure. We call this measure position error, which is given by

LS % - 97|
n =1

where X; are the positions of all nodes of a graph after regis-
tration, and X&' are the positions of the corresponding nodes
from the ground truth graph.

Since this first measure does not take topology into account
we also introduce a second measure, which does not penalize the
position, but only evaluates the shape. At every node, the angle
between the two adjacent edges is computed. This measure is
called the shape error, which is given by

(25)

n—1

1 Li i LiGTTRiGT
—n 5 ; arccos 7||L1|||IR1|| — arccos W
(26)

where L; = X;_; — X;, and R; = X;;; — X;. LET, and
RZ.GT are defined in an analogous manner. However, this error
measure is suitable mostly for cases with a low number of nodes,
since for large vessel systems, small random angle errors sum
up to large values not describing the quality of the results in an
appropriate manner.

We perform the tests on synthetic graphs with artificial de-
formations in order to test various aspects of the method. To
demonstrate the applicability for real applications, we apply the
tests to real vessels segmented from angiographic images, de-
formed by both, artificial and natural deformation fields. More-
over, we conduct a test on patient data coming from a clinical
setting.

ALGORITHM 2

Algorithm 2 Deformable 2D-3D Registration with Unknown
Correspondences

Given the input graphs G® and G2, and a projection matrix
Pv
1: initialize annealing parameters Ty, Tupdates 1 finals

/gfina,l
20 7 — Tina
3 (p(U) —0
4: /3 — Tinit + 5final
5: repeat
6:  //update assignment matrix according to Equation (23)
1 =P el
7: Mij = - eXp 5
8:  repeat
9: /lrow and column normalization
10: mij:%,yzy..w
11 m;; = N ,t=1,...,n

k
12:  until convergence
13:  //compute new correspondences
14: if 31, my; > thresh then
!

15: X; = Z?:] m;;X; , j=1...,N

l6:  else

17: discard point X; as outlier

18:  end if

19:  /fupdate the transformation on set C; = (X;,x}), i =
1,...,.N

20:  repeat

21 calculate VE = VD + aVSy + AV Sg

22: update displacements via a gradient descent step

23: update the 3D TPS and deform whole graph

24:  until convergence

25:  //update annealing parameter
26: T — 71update *T

270 B = Tupdate * B

28: until 7 < Ty

A. Parameter Values

The parameter values used for the experiments were deter-
mined empirically. The value of @« = 0.01, controlling the
length preservation term, yields good results for all input data
sets. For the smoothness term, (gn.1 = 0.1 was used as lower
boundary of the relaxation scheme, i.e., the smoothness param-
eter was not allowed to drop below this value. The initial value
for ( at the beginning of relaxation was set to 8 = Tinit - Bfinals
as described in Algorithm 2. The parameter 7 is not set by the
user, since the row and column constraints on the assignment
matrix avoid trivial solutions automatically.

Annealing parameters are chosen such that the final value
Thnal is equal to the minimal distance between two nodes in
2D. T4 is set to 500 - Ty, and the update parameter T\ dates
usually between 0.9 and 0.99, is set to 0.93.

The threshold for outlier removal (see Algorithm 2) is set to
0.01, i.e. if the sum of all probabilities in a column is below 1%
this 3D point is assumed to have no corresponding 2D point.
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TABLE I
RESULTS OF ERROR EVALUATION ON SEVERAL SYNTHETIC AND REAL DATA
SETS WITH GIVEN CORRESPONDENCES. THE POSITION ERROR BY EUCLIDEAN
DISTANCE, AS WELL AS THE SHAPE ERROR BY ANGLE MEASUREMENT IS
ASSESSED. WE GIVE THE MEAN ERROR gt AND IN ORDER TO SHOW THE
SIGNIFICANCE OF THE IMPROVEMENT ALSO THE STANDARD DEVIATION ¢. FOR
THE MEAN, THE RELATIVE IMPROVEMENT TO THE INPUT DATA 1S GIVEN IN
PERCENT. FOR VISUALIZATION OF THE SETTINGS, COMPARE FIGS. 8, 9, AND 11
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TABLE II
RESULTS OF ERROR EVALUATION ON SEVERAL SYNTHETIC AND REAL DATA
SETS WITHOUT CORRESPONDENCES. THE POSITION ERROR BY EUCLIDEAN
DISTANCE, AS WELL AS THE SHAPE ERROR BY ANGLE MEASUREMENT IS
ASSESSED. WE GIVE THE MEAN ERROR gt AND IN ORDER TO SHOW THE
SIGNIFICANCE OF THE IMPROVEMENT ALSO THE STANDARD DEVIATION ¢. FOR
THE MEAN, THE RELATIVE IMPROVEMENT TO THE INPUT DATA IS GIVEN IN
PERCENT. FOR VISUALIZATION OF THE SETTINGS, COMPARE FIGS. 8,9, AND 11

There are two inner loops listed in Algorithm 2, one for opti-
mization, one for row and column normalization of the assign-
ment matrix. Convergence for the optimization is tested by clas-
sical termination criteria, i.e., small parameter update, and small
difference in energy values between successive iterations. The
normalization loop is repeated 60 times, as suggested by Chui
and Rangarajan [38].

B. Tests on Synthetic Data

For these tests, we use two 3D graphs, where one of the
graphs is a deformed version of the other. The deformation
is performed such that the length is not changed. To this end,
we employ a dedicated deformation function, which is not
used in our method itself, in order to assure the validness of
comparison. The transformation is computed in the following
way. Starting from an initial node, all remaining nodes are
processed in a sequential manner. At every node, a rotation
is performed about an axis passing through the previous node
and being orthogonal to the plane formed by the Y -dimension
and the projection ray. This ensures that most displacement
happens along the projection rays, which gives an appropriate
test setting for evaluating the role of the regularization terms.
The rotation angle is varied at every node due to a trigono-
metric function, with a variable frequency and amplitude.
The computed rotation is applied to the yet unprocessed part
of the graph. Same applies also for the deformation used in
Section ITI-C. The graph, which is not deformed serves as input
for the method, while the deformed one presents the ground
truth solution. The 3D ground truth is not directly used, but we
generate a 2D projection of this structure, which is used as input
for the method, together with the projection matrix. For three
exemplary data sets (Synthl, Synth2, and Synth3) quantitative
and visual results are presented in Tables I and II, and Fig. 11.

Test Type Position Error [mm] Shape Error [rad] Test Type Position Error [mm] Shape Error [rad]
Test | Data |[p [ o B o Test [ Data |[u [ o [p | o

Svnth 1 |_Input [ 446 3.58 [[0.5847 0.777 Tnput |[4.46 3.53]10.585 0.777
y Naive || 0.94 (78.9%) | 1.06 || 0.4115 (29.6%) | 0.514 Synth 1 e e 11143 (67.74%) | 0941261 C116%) | 1.129
Result || 0.87 (80.5%) | 0.30 || 0.1459 (75.0%) | 0.143 Result |[0.81 (81.83%) | 0.40([0.126 (78.4%) | 0.135

Synth 2 |nput || 1.36 1.09 || 0.3224 0.363 Input [[1.36 1.09][0:322 0.363
y Naive || 037 (72.8%) | 047 || 0.2883 (10.58%) | 0.307 Synth 2 —Ge 17036 (753%) | 0470288 (10.6%) | 0.308
Result [| 0.17 (87.5%) | 0.17 || 0.0780 (758%) [0.072 Result |[0.31 (77.2%) | 0.07]|0.023 (77.1%) | 0.016

Synth 3 Input || 1.42 0.80 || 0.3463 0.199 Input || 1.42 0.80[[0.346 0.199
y Naive || 0.72 (49.3%) | 0.57 || 0.2448 (29.3%) | 0.174 Synth 3 e [IT21 (148%) | 0950513 (482%) | 0.616
Result [ 0.84 (40.8%) | 0.63 [[ 0.2218 (36.0%) [0.154 Result |[0.89 (37.5%) | 0.67]/0.271 (21.9%) | 0.155

Liver 1 | input || 7.38 223 || 0.1675 0.168 . Tnput || 7.38 2.23([0.168 0.168
Naive || 3.17 (57.0%) | 2.85 || 0.1266 (24.4%) | 0.127 Liver 1 —aive [[7.84 (62%) | 643][0.754 (350%) | 0.636

Result || 3.70 (49.9%) | 3.08 || 0.1428 (14.75%) | 0.157 Result || 3.44 (35.4%) 1.92][0.163 (2.69%) | 0.163

Liver 2 |input || 1.20 0.65 || 0.0082 0.009 ‘ Input_[[1.20 0.65 [ 0.008 0.009
Naive || 0.99 (17.5%) | 0.68 || 0.0057 (30.5%) | 0.008 Liver 2 —afve 3.8 (216%) 2.70([0.977 (<-500%) | 0.701

Result [[ 0.99 (17.5%) | 0.68 || 0.0062 (24.4%) | 0.008 Result || 1.15 (4.2%) 0.57][0.007 (9.76%) | 0.009

Liver 3 |_input || 14.88 15.0 || 0.2188 0.167 . Input [[14.88 15.0[[0.219 0.167
° | Naive || 8.33 (44.0%) | 4.53 [[0.2274 (-3.9%) [0.221 Liver 3 —ive 1115 22.7%) | 6.40{[0.283 (-29.3%) | 0.208
Result || 8.24 (44.6%) | 5.17 || 0.2847 (-30.2%) | 0.223 Result || 10.71 (28.0%) | 6.69 || 0.268 (-22.3%) | 0.204

C. Real Data With Artificial Deformation

In order to assess the behavior of the method on natural vessel
structures in a quantitative way, we deform the graphs extracted
by segmentation from patient data sets with a length-preserving
deformation function, as described in Section III-B. This way,
we are able to perform our method and measure the distance
of the result to a known ground truth in the same way as for
synthetic data sets. A projection matrix computed from a rigid
CTA-to-DSA registration of the respective patient is used to
create the input 2D vessel graph. For the presented tests, we
use a liver data set (Liver 1) from a patient who suffers from
hepatocellular carcinoma and was treated with Transarterial
Chemoembolization, compare Tables I and II and Fig. 8(a).

D. Real Data With Natural Deformation

Natural deformation fields for human organs are hard to ob-
tain. In order to verify our method on possibly natural defor-
mations we employ the results presented by Siebenthal et al.
[39]. The displacement fields provided by this work are com-
puted from a series of contrasted 4D MR images of the liver. A
deformable registration is performed in [39] between the single
3D images, where the high time resolution together with the
strong texture of the contrasted images assures the quality and
reliability of the resulting deformation field. We segment the
vessel structures from the contrasted MR images used in [39],
and generate the input 3D graph for our method. Then, we apply
the displacement field from [39] to the 3D graph and thus com-
pute the ground truth for the result. A projection matrix yielding
an anterior-posterior image was used for 2D input creation. In
the same way as for the synthetic data sets, the 3D ground truth
together with initial and deformed 3D input graph are used to
quantitatively assess the performance of our method. Despite
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(b)

Fig. 8. Visualization of segmented real vessel structures. (a) Liver 1 data set
(CTA) taken from a patient suffering from hepatocellular carcinoma. (b) Liver
2 data set (MRA) taken from Siebenthal et al. [39].

the small deformation observable in the data set (Liver 2), a
clear improvement is achieved. Compare Tables I and II, and
Fig. 8(b).

It can be observed that our method performs slightly better
for the Liver 1 and 2 data sets if regularization is turned off and
correspondences are known (compare Table I). This is due to
the fact that for these data sets the deformation in ray direction
is minor and regularization prevents the method to fully match
in-plane deformation. Interestingly, however, the method per-
forms better for all data sets if regularization is turned on and
correspondences are not known (compare Table II). Our pro-
posed regularization prevents the algorithm to assign false cor-
respondences, which can happen easily when using the naive
method.

E. Test in a Clinical Setup

This test is performed with known projection matrices and a
reference deformation field for comparison. An important issue
for the creation of this reference deformation field is the corre-
spondence problem on vascular 3D graphs, which we address in
an intuitive manner by resampling and length accumulation in
the first test and through careful manual inspection in the second
and third tests.

For all tests we use two 3D graphs extracted from a preopera-
tive CTA and an intraoperative cone-beam reconstruction of the
same patient undergoing a liver catheterization. Both data sets

have been acquired in deep inspiration. The intraoperative re-
construction is created from 395 views with projection matrices
known from calibration. The 395 projections cover an angular
range of 197° in 0.5° steps on a craniocaudal rotation axis.

First, we rigidly register the two 3D graphs. We manually de-
termine point correspondences of all bifurcation points visible
in both data sets. Unlike sampling nodes on vessel segments,
the location of bifurcations is well-defined at the junction of
a vessel graph and hence correspondency can be established.
Then, we rigidly register the two resulting 3D point sets using
the least-squares method of Umeyama [40].

1) Single Vessel Segment: Here, we test our algorithm in a
simplified yet realistic environment by choosing only one vessel
segment of the 3D vasculatures, which emanates from a bifurca-
tion for which correspondency is known. We run our registration
on this vessel segment only. Thus, we can automatically com-
pute corresponding points using a length preserving constraint
and hence reduce a possible bias in ground truth computation.

For computing a reference deformation field, we extract two
vessel segments, II; ; from the CTA graph and H;C’ ; from the re-
construction graph that are manually determined to correspond.
The chosen segment exhibits a large deformation, which is as-
sessed after rigid 3D-3D registration of the complete vessel sys-
tems [see Fig. 9(a)]. We now want to establish correspondences
between all sampling nodes of II; ; and H;C’ ; given the initial
correspondences B; — Bj.

The nodes on I1; ;, I} ; cannot be assumed to have the same
sampling since they have been extracted from two different data
sets. Thus, we first apply a resampling to II} , to have an in-
ternode distance which is significantly smaller Ycompared to the
internode distance of II; ;. Then, we assign correspondences to
the sampling nodes in the following way: For a node X € II; ;
determine its curve length to B;, d(B;, X). Walk through II} ,
starting from B, until the first node X’ has been found with
d(B},X’') > d(B;,X), which is assigned as corresponding
node to X. This procedure is repeated for all nodes in 1I; ;.6

With the set of correspondences {X, <« X}}, h =
1,...,n;; we can compute a 3D Thin Plate Spline to align
the two vessel segments II; ; and H;c’l. The resulting spline
is used to deform II; ; to ﬁz j- With this method—in spite of
the discretization error that is introduced—we observed the
difference in length of I1; ; and 11, ; to be smaller than 6%.

As input for our registration method, we use the segment I1; ;,
the segment ; ;, which is the projection of II} , by the ma-
trix Prec, and the correspondence information of the 3D seg-
ments. P .. is taken from one of the views used for reconstruc-
tion and thus resembles the 2D intraoperative situation, compare
Fig. 9(b).

A considerable improvement in position and shape error can
be observed when applying our algorithm, despite the large de-
formation of the vessel segment, compare the entries for Liver 3
in Table I.

A further test has been performed on this vessel segment with
unknown correspondences using our extended Algorithm 2. The
result is summarized in the entries for Liver 3 in Table II. It

6This sampling technique introduces an error to the assumption of length
preservation, which is bounded by the inter-node distance of II; ;.
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(b)

Fig. 9. Clinical setup: (a) rigidly registered CTA (green) and intraoperative reconstruction (red and purple) of the vasculature. The purple vessel segment was used
for the first clinical test. A large deformation is observable in this vessel compared to the corresponding, intersecting green vessel. (b) Projection of vessel segment
onto an intraoperative 2D image. The 2D image was used for the intraoperative 3D reconstruction and a projection matrix is known due to calibration.

can be observed that the position error still improves more if
regularization terms are incorporated. The shape error slightly
increases, but again the impact of the regularization terms is
shown when comparing to the naive method.

Please note that the initial errors for the Liver 3 data set have
been acquired after rigid registration.

2) Entire Vasculature Without Outliers: In this test, we de-
formed the entire vessel tree of the 3D reconstruction [red and
purple vessels in Fig. 9(a)] to match the CTA vasculature [green
vessels in Fig. 9(a)]. For that we manually identified 3D point
correspondences and computed a 3D TPS. Then we registered
this deformed vascular system “back” to 395 projections of the
nondeformed vasculature using Algorithm 2. These projections
were created using the vessel tree extracted from the original
intraoperative reconstruction and the projection matrices with
which it was computed. We use the graph extracted from orig-
inal 3D reconstruction as ground truth to assess the position
error.

Please note that, in order to be able to test the algorithm on a
complex data set without outliers, we do not use the CTA vessel
system as 3D input graph, but the intraoperative reconstruction,
which is deformed to match the CTA vessel system. We con-
ducted a test run, which computed 395 registrations. Moreover,
we ran the test once more with both regularization terms set
to zero. Both runs were performed with unknown correspon-
dences.

Fig. 10(a) shows the position error of the 2 x 395 registra-
tions. The horizontal line symbolizes the initial error. It can be
observed that a naive registration (without regularization) in-
creases the error whereas our method benefits from the regular-
ization terms to decrease the position error.

For images 180-210 and 260-280 the results are worse than
neighboring results. These cases suffer from a heavy overlap
of major vessels in the projections, which hampers the assign-
ment of proper correspondences. This overlap is not present for
the images where position errors are smaller after registration.
However, in all cases, an improvement can be observed when
comparing to the initial position error that was determined after
rigid registration.

3) Entire Vasculature in the Presence of Outliers: This test
is resembling the clinical scenario most realistically and adds
the presence of outliers to the previous test. We used the vessel
tree extracted from the preoperative CTA as 3D input. The 2D
input graphs are created by projection of the 3D reconstruction
that has been acquired intraoperatively. Again, the 395 projec-
tion matrices, which have been used in the previous test already,
are taken to project the 3D reconstruction. The 3D reference de-
formation field for error assessment is computed by evaluating
a 3D TPS on inverted correspondences used in the previous test.

It should be noted that the two data sets used for registration
have been created from global and local injection of contrast
agent and thus have a different level of propagation. Usually,
dye propagates further down the vessel tree if injected locally
through a catheter, which makes small vessels visible in the 3D
reconstruction, which cannot be visualized in the CTA data set.
Since the extraction of vessel graphs does not change vessel
topology, there is a considerable amount of outliers in this test,
compare Fig. 9.

As in the previous test, we computed 2 x 395 registrations
using Algorithm 2, one run was conducted using our proposed
model, one run with the naive method, where smoothness and
length preservation are excluded from the energy.
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Fig. 10. Result of the two tests of (a) deformed 3D reconstruction (no outliers) and (b) with original CTA and 395 projections of the intraoperative 3D reconstruc-
tion (Sections III-E-2 and III-E-3). The dots show the error after registration with our algorithm, the crosses show the error after registration with the naive method.
The horizontal line symbolizes the initial error. It can be observed that a naive registration increases the error whereas our method benefits from the regularization

terms to decrease the position error.
I I
-
-
(b) (d)

* Nt ¢
-
A
Fig. 11. Visualization of a selection of tests on synthetic data. Every row

[—
presents a single example setting, with the quantitative assessment of the
results in Table I (from top to bottom: Synth 1, Synth 2, Synth 3). (a) 3D input.
(b) Ground truth. (c¢) Our method (d) Naive.

Fig. 10(b) shows the position error of the 2 x 395 registra-
tions, again, the horizontal line shows the initial error (after rigid

registration). As in the previous test, a considerable improve-
ment can be observed when using our regularization techniques,
whereas the naive approach increases the error and cannot re-
cover a correct solution.

In the 395 registrations that have been performed in the pre-
vious and the current section, the position error can be observed
to increase in the first few registrations, decrease until half of
the angular run is reached, and increase again until the end of
the C-arm rotation. This penomenon can be explained with the
geometric distribution of the liver vessel tree, which is mainly on
the frontal plane. Thus, the first and last registrations, which use
images of the anatomy from the left or right side of the patient,
“compress” the geometric distribution of the vessel tree, which
decreases the registration accuracy. However, even in these situ-
tations our method can still find a solution, which decreases the
position error compared to the initial rigid registration result.

IV. DISCUSSION

In the previous section, we demonstrate that our method
performs well in different scenarios. Even in the most general
case where complex vascular systems are registered with
unknown correspondences and in the presence of outliers, our
experiments clearly reveal the impact and importance of our
proposed regularization terms together with the difference term
minimizing the euclidean error in 2D. We will now first briefly
comment the clinical necessity of our proposed deformable
registration method, followed by a discussion on the impact
of the necessary previous steps on the accuracy, robustness
and clinical feasibility. Moreover, runtime issues and possible
ambiguities in the computed solution will be addressed.

A. Vessel Deformation in Clinical Routine

In clinical practice, pre- as well as intraoperative data sets are
acquired in deep inspiration while the patient holds his breath.
This will usually cause the vessel anatomy to be rather similar
and only have a minimal amount of deformation. However, as



858

confirmed by our clinical partners, patients tend to hold their
breath in different breathing states before and during the inter-
ventions. Moreover, inserted instruments like a guide wire or a
catheter can also lead to vessel deformation. These issues can
sometimes have a considerable effect on vessel deformation,
which has also been shown in our clinical test setup, see Sec-
tion III-E. Thus, we believe that 2D-3D deformable registration
is crucial in this single-view angiographic scenario and will lead
to more accurate results in terms of intraoperative navigation
and guidance.

B. Segmentation

Our proposed method operates on 2D and 3D vessel features,
which are extracted prior to the registration. The issue of using
features rather than intensities for the registration influences our
method in terms of accuracy and robustness.

Registration accuracy is directly dependent on the accuracy
of the extracted vessel features. Since both, preoperative 3D
data sets and intraoperative DSAs have a high intensity gra-
dient (and thus intensity variation) at the vessel boundaries, even
simple segmentation techniques like region growing yield re-
sults, which can be accurate up to a voxel/pixel precision. As
state-of-the-art scanners can reconstruct volumes up to a sub-
millimetric resolution, the metric segmentation error is rather
small. In order to run our algorithm on the required features, we
need to extract a centerline from the segmentation, which, in our
experiments, employs topological thinning as described in [25].
This algorithm creates an approximation of a skeleton, which
resembles the centerline in tubular structures. The approxima-
tion error is bounded by the radius of the vessel segments, which
is below 2.5 mm for liver arteries. Assuming an error made by
the skeletonization approximation of 1/4 of the radius, the prop-
agated feature extraction error will be less than 0.625 mm corre-
sponding to more than 1 voxel” in 3D and more than two pixels
in 2D.8 In summary, neither segmentation nor centerline extrac-
tion will introduce a large error. Region growing methods for
vascular segmentation are usually very fast and involve a single
seed point, which does not create much additional user interac-
tion during an intervention. The process of topological thinning
is fully automatic, rendering the feature extraction step feasible
for clinical scenarios.

Due to different application of contrast agent in the two data
sets (global injection in preoperative 3D data, local injection
through a catheter in 2D data), our method has to deal with a
certain amount of outliers (small vessel segments, which are
only visible in 2D, segmented 3D vessel parts, which are not
contrasted in 2D). This issue is addressed with the slack row/
column in the assignment matrix (Section II-H), which makes
the method more robust to outliers. Moreover, as can be depicted
from the results in Fig. 10, length preservation and smoothness
regularization penalize solutions where outliers contribute to the
computed transformation.

Please note that the error evaluation is not affected by the seg-
mentation error since the ground truth has always been com-
puted from the 3D input vasculature using a deformation field.

7A typical voxel resolution in CTA data sets is 0.6 x 0.6 x 0.6 mm?.
8For a typical in-plane pixel resolution of 0.31 x 0.31 mm?.
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C. Rigid 2D-3D Registration

Our method can be carried out after a rigid 2D-3D registra-
tion has been performed since the model utilizes a previously
computed projection matrix. Many catheterization interventions
provide a preoperative data set from a CTA or MRA scan. In
such a case, methods for rigid 2D-3D registration can be used
to determine the projection matrix to an intraoperative 2D DSA
[14]-[17].

Some hospitals use rotational angiography for acquisition of
an intraoperative 3D data set. In this case, a projection matrix
that projects the 3D data to match a currently acquired 2D DSA
can be assembled from calibration data and table position of the
imaging device [41].

Please note that our method is not solving for the entries
of a projection matrix, but assumes them to be given in ad-
vance. Thus, inaccuracies of the estimated matrix directly affect
the performance of our method. For intraoperative 3D data sets
the estimated projection matrix is usually very accurate (in the
range of submillimeters in the image plane) due to a precise of-
fline calibration step [42], [43].

2D-3D registration methods for preoperative 3D data sets re-
port in-plane errors below 5 mm and out-of-plane errors below
15 mm in a single-view scenario [14], [16], [17]. We have shown
in the experiments that our method can cope with errors up to
3.8 cm, which makes a concatenation of rigid and deformable
2D-3D registration feasible.

D. Runtime

The runtime of our method depends on the number of graph
nodes that are used in the optimization step. The 3D graphs
used in the clinical evaluation in Section III-E have 160 and 320
nodes, respectively, which corresponds to a runtime of 3.2 and
4.3 min (averaged over the 395 registrations, executed single-
threaded on a Intel Core 2 Duo 3 GHz). Together with 2D seg-
mentation and rigid preregistration, this sums up to a runtime of
ca. 5-7 min,® which is acceptable in an intraoperative situation
as confirmed by our clinical partners.

E. Ambiguities

Our proposed method converges to the right solution in most
cases. However, there are two special initial configurations
where the energy function is not guaranteed to drive the gra-
dient descent scheme to the correct solution. Both cases only
occur if the deformation changes the sign in vessel curvature
along the projection direction.

Typically, a gradient-based optimization algorithm will—
given a suitable step size—converge to the “nearest” local
optimum. Even if a vessel segment is deformed along the
projection direction, the algorithm will compute the right
deformation field given a suitable initial position. However, if
the vessel segment either deforms from a straight line, or if it
changes the sign of curvature during deformation, the proposed
method is not guaranteed to converge to the right solution.

9Runtimes for segmentation and 2D-3D rigid registration have been taken
from [17].
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A segment, which is a straight line down to the precision of
a single voxel is not very probable to be part of real vessel sys-
tems. Moreover, vessel systems are rather unlikely to invert their
sign of curvature if they undergo a natural deformation due to
e.g., patient breathing. Thus, we assume that these special cases
do not occur frequently in real scenarios. Furthermore, if the
curvature is computed for all vessel segments, straight lines can
be detected, and the algorithm can indicate a possible conver-
gence problem.

V. CONCLUDING REMARKS

In this paper, we present a method for deformable registra-
tion of 3D vessel structures to a single 2D projection image.
We consider the 2D-3D pose estimation problem to be solved
before the application of our method. We compute a 3D de-
formation field via the combination of a difference measure
with constraints resulting from valid assumptions, and thus
improve the rigid spatial alignment of the 3D vessel, which
up to now presents the state of the art for this problem. Using
the regularization terms Sz, and Sg, we successfully account
for the inherent ill-posedness of the problem, that is, the un-
known deformation in projection direction. For estimating
the correspondences between vessel feature points we choose
a softassign method, which gradually determines the most
probable correspondence between 2D and 3D locations. In
an overall annealing schedule, both nonrigid transformation
and correspondences are determined. The improvement in the
spatial alignment is important for 3D depth perception and
navigation during interventions. Furthermore, the physical
plausibility of the results is increased due to the length preser-
vation constraint. Quantitative and qualitative tests on clinical
and synthetic data sets clearly demonstrate the improvement
achieved by our method.
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