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Abstract. Intravascular Ultrasound(IVUS) is an imaging technology
which provides cross-sectional images of internal coronary vessel struc-
tures. The IVUS frames are acquired by pulling the catheter back with a
motor running at a constant speed. However, during the pullback, some
artifacts occur due to the beating heart. These artifacts cause inaccu-
rate measurements for total vessel and lumen volume and limitation for
further processing. Elimination of these artifacts are possible with an
ECG (electrocardiogram) signal, which determines the time interval cor-
responding to a particular phase of the cardiac cycle. However, using
ECG signal requires a special gating unit, which causes loss of impor-
tant information about the vessel, and furthermore, ECG gating function
may not be available in all clinical systems. To address this problem, we
propose an image-based gating technique based on manifold learning.
Quantitative tests are performed on 3 different patients, 6 different pull-
backs and 24 different vessel cuts. In order to validate our method, the
results of our method are compared to those of ECG-Gating method.
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1 Introduction

Intravascular Ultrasound is a unique invasive catheter-based imaging technol-
ogy, which yields a high resolution, real-time cross-sectional view of the blood
vessels from the inside-out. The cross-sectional images are acquired by pulling
the catheter back with a motor running at a previously defined constant speed,
and this whole process is referred as a pullback. Since IVUS modality provides
a very detailed information about the internal vessel structures, it is a unique
tool for the diagnostics of coronary artery diseases(CAD) and plaque character-
ization. For diagnosis and assessment of the disease, accurate measurements of
the total vessel and the lumen volume in the suspicious lesion areas are crucial.
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However, quality of the IVUS evaluations, and accuracy of the measurements
deteriorate due to artifacts caused by heart movement during a pullback[1]. The
most obvious artifact is the back and forth movement of the catheter in the vessel
longitudinal direction due to the periodical change in the blood flow while the
heart muscles are contracting and expanding. In [2], the authors observe that the
IVUS transducers within coronary vessels have a longitudinal movement of aver-
age 1.50+0.80 mm during each cardiac cycle. As the transducer moves back and
forth, it passes through the same locations of the vessel multiple times; thus it
oversamples the vessel. This means gaining unnecessary information which leads
to computational inefficiency for further processing. Furthermore, due to the
movement, the longitudinal cut of the vessel has a saw-toothed appearance(see
Fig. 5 first row) which makes the segmentation of the vessel even harder. An-
other artifact caused by the cardiac cycle is the change of the vessel morphology
due to the varying blood pressure during the cycle. The change in the mor-
phology leads to the variations in the lumen area observed at different cardiac
phases(systole,diastole). In [1,2], it is stated that measured lumen and vessel vol-
umes in non-gated image sets are significantly larger than normal and the choice
of the suitable phase is still a question. A way to account for the problems above
is introducing an electrocardiogram (ECG) signal, which is capable of giving
information about the heart’s current physical status. By utilising the ECG sig-
nal, heart and IVUS transducer are synchronized so as to capture the frames
only near the predetermined fraction of the RR-interval[1]. However online-ECG
gating requires an ECG unit, which may not be always available to the physi-
cian. Furthermore, in the older systems that used ECG triggering, ECG gating
increased the image acquisition time, and in the new systems, the acquisition
time is not affected but some important information about the vessel is lost.

In this paper, we introduce a robust image-based gating method based on
manifold learning. By designing this method, our overall aim is to retain only the
necessary information about the vessel, (the frames at a particular fraction of
the RR-interval), which will be good enough to provide accurate lumen volume
measurements and vessel length; at the same time will avoid loss of important
plaque information in the lesion areas.

2 Related Work

In [3], a method for classification of the IVUS frames as end-diastolic and not end-
diastolic is presented. As preprocessing, important image characteristics such as
edges are enhanced, different feature vectors based on spatial and frequency
characteristics of the images are defined, and finally a nearest neighbor search
based on the Euclidean distance between the feature vectors is used to classify
the frames.

In [4], a method to retrieve the cardiac phase by examining the features in a
circular region of interest, namely Average Intensity(AI) and Absolute Intensity
Difference between the subsequent frames, was discussed.
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In [5,6], an image-based gating algorithm is proposed where a Dissimilarity
Matrix based on the Normalized Cross Correlation (NCC) is built between each
2-tuples of the pullback; then the matrix is filtered with an X-shaped inverted
Gaussian kernel, which highlights the frames with high similarity. Finally an
algorithm to find the highest local maxima along the path on the diagonals,
that represents the optimal gating frames, is introduced.

In [7], the authors use a similar technique to [5], by building the dissimilarity
matrix D based on the image descriptors which are defined based on Gabor
patches. A 1D signal is extracted from D, which defines the similarities between
the frames and finally a local minimum search over the 1D signal is performed
to obtain the best frames.

3 Our Contribution

In all the methods discussed above, even if different techniques were used, the
overall objective is to be able to construct a 1D signal similar to R-waves by
using the information(features) that is embedded in the images. In this paper,
we propose directly projecting our high dimensional data, to a low-dimensional
manifold and thus treating each image frame as a low-D signal in the low-D
manifold.

A variety of dimensionality reduction techniques have been proposed in the
literature, ever since emergence of complex and high-dimensional input data.
The most commonly used linear dimensionality reduction techniques such as
Principal Component Analysis(PCA) and Multi-dimensional scaling(MDS) are
efficient and simple, however are not able to detect nonlinear structures that exist
almost in all true datasets. The human cardiac system is nonstationary,dynamic
and nonlinear; hence, linear analyses may not account for all aspects of cardiac
performance|[8,9].

Manifold learning is an effective, geometrically motivated, nonlinear dimen-
sionality reduction technique, which is used to solve a variety of vision problems
such as segmentation, registration, tracking and object recognition. The tech-
nique was validated to be successful, particularly if the input has smooth ap-
pearance variation or smooth deformation[12]. As explained in Section 1, cardiac
cycle’s first effect, slowly varying longitudinal movement of the catheter, results
in a smooth appearance variation. Furthermore, the slight vessel morphology
change during the cycle results in a smooth deformation in the input images.

In addition, in the lesion areas where the cross-sectional view of the vessel
can change faster, using global distance metrics would fail because the lesion
areas would be detected as outliers. However manifold learning preserves locality,
which makes it much less sensitive to noise and outliers.

With the motivation provided above, our contribution in this paper, is to
adopt and apply the manifold learning framework to our problem of image-based
gating of IVUS pullbacks as explained in the next section.
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4 Method

Isomap [10], local linear embedding [11], and Laplacian eigenmaps [12] are three
different techniques for manifold learning. In this paper we will use Laplacian
eigenmaps technique, which is very simple and efficient since it solves only one
sparse eigenvalue problem. We construct our problem as follows:

Given a set of k points x1, ..., z; in R%, where k is the number of frames z;
in the pullback and d is the dimension of the image; find another set of k points
Y1, -, Y i R™  where m < d. We assume that x1,...,2, € M , where M is a
manifold embedded in R?.

An important issue is the choice of the dimension of the M, denoted by m. We
need one dimension to account for the smooth appearance variation caused by
the first artifact, and another dimension to account for the smooth deformation
caused by the second artifact (see Section 3). Thereby, we choose m > 2. We
heuristically choose m = 3. In another words we choose to represent each image
frame with a 3D vector.

Laplacian Eigenmaps

Fig. 1. An illustration of Manifold idea. Each frame is shown with a dot on the cal-
culated low-D manifold(here m=2), where A;B,C,D,E are the clusters of frames that
belong to different cardiac cycles.
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4.1 Laplacian Eigenmaps

Laplacian eigenmaps[12] is an approach that incorporates the neighborhood in-
formation of the input to build a weighted graph. After building the graph, a
low-D representation of the input that optimally preserves local neighborhood
information, is computed by using the Laplacian of the graph. It is worth not-
ing that, since the approach is geometrically motivated, the resulting mapping
will be a discrete approximation of a continuous map from the high dimensional
space to the low-D manifold.

The first step is to construct the graph with representative k nodes for each
x; and edges between the nodes z; and x; , if the nodes are close enough. The
relationship of being close can be defined as an e neighborhood ||z; — z;|| < €,
where ||.|| denotes the Euclidean norm. The disadvantage of this choice is the
parameter setting. Another option is using n nearest neighbors, where one can
put an edge between the nodes z; and z; if j is one of the n nearest neighbors of
i. If we define the approximate number of frames in each cardiac cycle as ncycie,
the parameter n should satisfy n > ncycie-

Another important issue is defining a similarity measure for the nodes x;
and z;. In our weighting function we used Sum of Squared Distances(SSD),
but different measures such as Sum of Absolute Difference(SAD) or Normalized
Cross Correlation (NCC) can also be used.

The second step is to weight the edges in the graph by the appropriate
weights. Weight function is inspired from the heat equation given by

W;; = eaplei=asll*/207 (1)

where o2 is the variance. W = [W;;];ij € [1,.., k], forms the weight matrix.

As a final step, a diagonal weight matrix D is constructed by summing up
the coloumns of W, and Laplacian L = D — W is then calculated. The eigenvec-
tors corresponding to the smallest eigenvalues (excluding zero) of the Laplacian
matrix gives the desired mapping. We refer to [12] for further details on the
Laplacian eigenmap method.

4.2 Clustering

In general there are about = 90 cardiac cycles in each pullback(see Table 2).
However, to illustrate the idea of manifold learning, a desired mapping for 9
sequential cardiac cycles is given in Fig. 1. In Fig. 1, the low-D manifold gives
a very nice intuition of the clusters that belongs to the same cardiac cycle. We
observed that the largest distance between the eigenvectors V; and V; 11 occurs if
V; is the last frame that belongs to the n'" cardiac cycle and V;; is the starting
frame of the (n + 1)* cardiac cycle. The distance signal d = ||V;11 — V|| is
constructed. Since the method preserves the local-distances, the global structure
is more visible after normalization of d. In Fig. 2, constructed d function for 400
frames is shown for illustration, where green boxes indicate the local maxima
points in d function.
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In order to find the local maxima points of the distance function d, we utilise
a morphological eroding operation. Let min ,ster be the minimum number of
frames in a cluster, then a structuring element of size min jy,ster is constructed
and distance signal is eroded with the structuring element. If the current point
is a local maximum around the structuring element, then eroding operation will
not change its value, thus we check for the points that has not changed after
the eroding operation. This very simple but efficient technique finds the local
maxima points. In some cases, where the frames of the sequential cardiac cycles
are too similar, e.g branching areas, the distance function may not have any
local maxima. In other cases, where the frames of one cardiac cycle are too
different (e.g lesion areas where vessel changes rapidly), the distance function
may have more than one local maxima. In those cases, we refine the results
of the local maxima and check the number of frames between each possible
consecutive maximum. If the difference between the two consecutive possible
maximum points is bigger than 2n.yce, we look for another local maximum
between them, and if the difference is smaller than ncyce /2 we eliminate the
possible maximum. After the post-processing step, local maxima of the distance
function d, hence the gated(stable) image frames are obtained, and the IVUS
gating algorithm is completed.

5 Experiments and Results

We applied our automatic image-based gating algorithm on 3 different patients
and 6 different pullbacks. All the pullbacks were acquired in-vivo in the coronary
arteries of the patients of our clinical partners with 40 MHz IVUS catheter. The
frame rate was 30 Hz and the motorized pullback speed was 0.5 mm/s.
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In our method, we used ncycie to represent the number of frames per cardiac
cycle. neyere is defined as frate/1.2Hz , where 1.2 Hz is the average heart beat
rate of human species and frute is the frame rate of the pullback. Similarly
MiNeyuster 1S Used to represent the minimum number of frames in a cardiac
cycle. mingyster can be equated to frate/(1.2Hz+20) , where o is the variance
of the heart beat rate. The variance of the heartbeat may be high in the patients
with irregular heart beats. Choosing a large ¢ would guarantee to find the local
maxima points in d function for those patients. However, the latter may lead to
too many possible local maxima points. In our experiments, we choose a small
oc=0.1Hz.

ptia 1 2 2 3 3

3

pbia 1 1 2 3 1

2

Angle 10 50 130 150(10 50 130 150{ 10 50 130 150| 10 50 130 150| 10 50 130 150| 10 50 130 150

LAD Error|0.02 0.04 0.02 0.02| 0 0.05 0.1 0.1|0.07 0.03 0.07 0.090.02 0 0.03 0 |0.03 0.01 0 0.02]0.08 0.1 0.01 0.01

Mean Error 0.02 0.06 0.06 0.01 0.01 0.05
Table 1. Lumen Area Differences Error Analysis, where pt;q is the patient id, pbiq is
the pullback id, angle is the viewing angle for constructing a longitudinal cut and LAD
Error is the lumen area difference error.
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Fig. 3. (a)Bland-Altmann Analysis of Lumen Areas drawn by the medical experts on
ecg gated pullback and image-based gated pullback: 790+40.79 pix. (b) Bland-Altmann
Analysis of gated frame normalized count calculated by ecg gating and image-based
gating: 3.1667 £ 0.937.

In order to validate our results, we compared the number of gated frames
obtained by our algorithm and by ECG gating algorithm. In Table 2, the number
of gated frames from the two methods show agreement. As stated in Section
3, the accurate measurements of lumen is crucial for coronary artery diseases’
diagnostics. For that reason, we compared the lumen areas calculated from our
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gated pullbacks and ecg gated pullbacks. The lumen areas were drawn by the
expert cardiologists in our team. For more accurate results, we compared the
lumen areas in the longitudinal views of the vessel from 4 different angles for
each pullback. In Fig 4, an illustration of vessel longitudinal cuts at different
angles is given. Difference(LAD) error in Table 1 is calculated as the ratio of the
absolute difference of the areas found by the two methods, with the ecg-gated
pullback area used as the ground truth: LAD ;o = |LAecg — LAaigl/LAecq
where LAccq is the lumen area in the ecg gated pullback and LA, in the image
based gated pullback. An LAD error rate of 0.0440.03 is obtained. In addition,
a Bland-Altmann analysis on the lumen areas (Fig. 3.a), revealed that more
than 95% of the measurements were in agreement between the two methods. In
Fig. 3.b, a plot for the Bland-Altmann analysis based on the number of gated
frames calculated by both methods is given. To account for the different vessel
lengths among our dataset, we considered the normalized counts, computed as
#eated / #total. Longitudinal IVUS views shown in Fig 5, demonstrate similar
qualitative outcome for our manifold-learning based IVUS gating method, and
the ECG-gated method, which is also verified by the expert cardiologist in the
team.

ptia pbia #total #ecg #alg length[mm)]

1 1 2328 81 77 38.80
2 1 1627 54 52 27.12
2 2 1800 58 55 30.00
3 1 2388 85 83 39.80
3 2 2379 86 82 39.65
3 3 2358 91 82 39.30

Table 2. Comparison of the frame counts chosen by ecg gating algorithm and our image
based gating algorithm.pt;q is the patient id, pb;q is the pullback id, #ecg represents the
number of frames chosen by ecg, #alg shows the frame count selected by our algorithm
and length[mm)] is the actual length of the vessel.

6 Conclusion

We presented a novel image-based gating method for IVUS sequences. Our
method is based on manifold learning, which embeds the similar IVUS frames
onto contiguous positions of a low-dimensional manifold lying on a high dimen-
sional image space. Further, we classified the frames by using distances between
consecutive eigenvectors that represent the IVUS frames using the frame rate of
the pullback and basic heart beat rate knowledge. We tested our data on 3 pa-
tients and 6 in-vivo pullbacks. We compared the number of selected frames and
the lumen areas in 4 different longitudinal views, computed by both methods.
Future directions for this work include analysis of lumen volume differences and
the plaque areas of the gated pullbacks.
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Fig. 4. (a)An illustration of longitudinal cuts(LC) at different angles (b) LC from 10°
(¢) LC from 50° (d) LC from 130° (e) LC from 150°.
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