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Abstract

We propose a method that rates the suitability of given
templates for template-based tracking in real-time. This is
important for applications with online template selection,
such as SLAM, where it is essential to track a low number
of preferably reliable templates. Our approach is based on
simple image features specifically designed to identify tex-
ture properties which are problematic for tracking. During
a training step, a support vector regressor is learned. It uses
a tracking quality measure which considers both conver-
gence rate and speed obtained by simulation of many track-
ing attempts. Finally, a minimum set of image features is
identified to speed up the online selection process. In exper-
iments on real-world video sequences our method improved
the detection rate of an existing tracking-by-detection sys-
tem by 8% on average.

1. Introduction
Since the pioneering work of Lucas and Kanade [13],

template-based tracking has been an important technique
for many applications, such as augmented reality, visual ser-
voing and industrial automation. Various algorithms [3, 4,
8, 11, 20] have been presented aiming to improve efficiency
and robustness especially with respect to fast movements.

However, success rate and speed are not only dependent
on the selected tracking algorithm but also on the texture
of the template to be tracked: The texture may not pro-
vide enough information for a reliable estimation of the im-
age warp. Several methods [2, 7, 18, 20] were suggested
to overcome this problem and to select the template with
a promising texture. While [7, 18] came up with an ana-
lytic measure of “texturedness” of a template, more recent
approaches [2, 20] obtain better results using training steps.
However, extensive training is not possible for online track-
ing systems which are working in a permanently changing
environment and must constantly identify new templates
from a large set of available “candidate” templates. There-
fore, these applications demand a real-time method to find
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Fig. 1. Proposed template rating system. In a one-time offline
training phase, a regressor is trained with a large dataset of ar-
bitrary templates. During runtime, the regressor is used to reliably
predict tracking behavior of any observed template in real-time.

templates that promise most reliable and fastest tracking.
In this paper, we propose a fast and reliable method

which rates the tracking suitability of templates in order to
identify the best templates on an object. Given an image
template at run-time we predict the tracking behavior based
on its texture. An appropriate model is hard to grasp ana-
lytically, and existing methods such as [20] are too slow for
real-time applications. Our method is based on learning the
relationship between simple and fast-to-evaluate template
features and a tracking quality measure in an offline stage.
Processing time in the online phase is then in the order of
one millisecond, allowing real-time processing.

The rest of the paper is structured as follows: We recall
existing work in the remainder of this section. Sec. 2.1 de-
scribes the quality measure used in our approach. Sec. 2.2
presents simple and fast features used for learning and pre-
diction. Rapid template rating (or quality prediction) is dis-
cussed in Sec. 2.3. We give detailed evaluation on simu-
lated tracking experiments as well as on real-world videos
in Sec. 3 and conclude with Sec. 4.

Related Work Lucas and Kanade [13] introduced a pop-
ular method to register the deformed view of a template to a
reference view by minimizing a linear approximation of in-
tensity image differences with a steepest decent approach.
Many other so called first order template-based tracking al-
gorithms have been suggested meanwhile (refer to [1] for an
overview), such as the inverse compositional (IC) approach.



Recently, [3] presented an efficient algorithm (ESM) that
behaves superior to all analytic first order approaches in
terms of convergence rate and convergence basin. Instead of
using analytic methods, [11] presented a tracking algorithm
(JD) that is based on learning, assuming a linear relation-
ship between image difference and motion. The advantage
compared to the analytic approaches lies in the larger con-
vergence basin.

Shi and Tomasi [18] discussed the problem of identify-
ing textures which are suitable for tracking. They came up
with a “texturedness” measure that identifies pixels which
can be located precisely and robustly by measuring the con-
ditioning of their tracker. We pick up this idea in Sec. 2.2.2.

Carneiro [5] proposed a method to find robust and dis-
tinctive local image features, using a learning approach.
They investigated a similar problem as we do in the con-
text of feature descriptors. For template tracking we must
define new features, while [5] relies on the existing feature
descriptors. Also the target value (quality) must be defined
in a specific way for trackers.

A method to select an active set of templates on an object
was presented by [20], based on optimization of a coverage
and a quality measure. However, the latter requires learn-
ing and evaluation of a large number of “candidate predic-
tors” (or trackers) evenly distributed on the object. This
must be done during a time-consuming offline phase, which
is not suitable for online systems working with constantly
changing objects. In contrast, our approach predicts track-
ing performance of templates in real-time, without the need
to learn or evaluate a tracker for each new object.

Another contribution of [20] is to find template pixels
which behave optimal with respect to the linearity assump-
tion in the tracking equations. It uses a greedy search over
random subsets of pixels which is very time consuming es-
pecially for larger templates. Benhimane [2] also presented
a method that finds subsets of template pixels which verify
the analytic approximation (linear or quadratic) of the track-
ing algorithm. Combined with a bottom up search strategy
and a stable union operation it avoids the combinatorial ex-
plosion of [20] and is therefore also suitable for larger tem-
plates. Both approaches improved the convergence behav-
ior significantly. However, the time to obtain these special
pixel sets is in both cases far from real-time and makes the
presented methods unsuited for online applications.

Mac Aodha [14] proposed a method using learning to
find the best algorithm for optical flow estimation on a per-
pixel basis. Some of their features are similar to ours,
but they also use complex ones not suitable for an online
method. Finally, several authors investigated metrics for
tracking uncertainty or confidence during the tracking pro-
cess [12, 15]. In this work, we seek a metric that does not
rate individual observations, but is general for a given tem-
plate and algorithm setup.

2. Proposed Approach for Template Rating

The presented method estimates the suitability of a given
template for tracking in real-time and is partitioned into a
training and a runtime phase, see Fig. 1: During the one-
time training phase, tracking quality is measured by simula-
tion for a large database of templates. At the same time, cer-
tain features are evaluated on all templates of said database.
In a subsequent step, a regressor is trained using template
features (Sec. 2.2) as input variables and the quality mea-
sures as target values. At run-time, tracking quality is pre-
dicted in real-time using the template features and the pre-
viously learned regressor.

2.1. Measuring Tracking Quality

In this section, we discuss how to measure the tracking
behavior for a given template T using a given tracking al-
gorithm. The time-consuming process is based on exten-
sive testing by simulation, which considers most of the fac-
tors relevant for tracking and allows to realistically observe
the algorithm’s behavior. A tracking quality measure is ob-
tained and later used as a reliable “ground truth”.

Given a template T with surrounding texture seen un-
der Nv randomly selected artificial views with noise added,
Nv tracking trials are performed. The extent of the warp is
chosen according to the abilities of the investigated tracker.
The convergence likelihood for T is pc = Nc

Nv
whereNc de-

notes the number of views for which the tracking algorithm
converges correctly. Tracking converges if the spatial root
mean square error is below a certain threshold τrms after at
mostNrms trials. The convergence rate serves as a straight-
forward measure for the tracking quality of one template T
using one tracking algorithm:

Qr = pc (1)

Additionally, for the converged trials k = 1, . . . , Nc, the av-
erage convergence speed s = 1

Nc

∑
k sk is obtained by av-

eraging over the number sk of iterations until convergence.
We define the combined tracking quality Q, taking into ac-
count both tracking convergence rate and speed as follows:

Q = pc

(
1− ws

Nrms

)
(2)

where weighting factor w ∈ [0; 1] (here w = 0.5 is used)
determines the importance of tracking speed with respect
to convergence rate. Nrms is the maximum number of al-
lowed iterations (such that s ≤ Nrms) and is chosen based
on constraints of the available computational time. With the
definition of Eq. (1) and (2), the values of the quality mea-
sures lie between 0 and 1, where 0 denotes a bad template
for tracking. The measure Q showed to be a more discrim-
inative metric, and it is also more relevant for for real-time
system, where convergence speed is of great interest. We
will mainly use Q in the rest of this document, but the de-



sign process is valid for Qr as well. Fig. 2 shows some
example templates along with their quality Q (red bar).

Fig. 2. Some templates from the testing dataset. Bars indicate the
template’s quality Q (left/red, see Eq. (2)), and its predicted score
S (blue, Eq. (5)) with algorithm JD. Note that most of the good
templates look salient to a human observer.

2.2. Template Features

This section discusses the template features we propose
for our template rating method. They are derived from the
grayscale reference template T and will be used in Sec. 2.3
for real-time prediction ofQ. All features (denoted Φ? with
index ?) are collected in a feature vector F .

2.2.1 Texture Features

The proposed texture features are designed to extract prop-
erties relevant for tracking success from the reference tem-
plate T . Specifically, we consider the following properties
which are unfavorable for tracking:

1. Low spatial locality: Locality, i.e. similar pixel inten-
sities in a local neighborhood, is one of the basic as-
sumptions for tracking. The JD and IC algorithms use
a linear approximation of the warp–error image rela-
tion, which becomes invalid in case of low locality.

2. Uniform texture: Large texture areas of the same color
do not show an appearance change when an image
warp is applied. The respective region cannot provide
any information about the observed warp. Therefore,
uniform areas are unfavorable for tracking, especially
if they are located close to the template’s boundaries.

3. Low contrast: A low contrast of the texture leads to a
higher sensitivity to noise and lighting changes.

4. Directional texture: Uni-directional structures such as
parallel lines look equal or similar under translations in
a certain direction. This leads to a vanishing tracker er-
ror image for said translations, and the observed warp
cannot be uniquely determined.

5. Repetitive texture: Regular patterns exhibit a similar
problem as directional textures: They lead to a zero
error image for periodic displacements and thus allow
multiple solutions for the observed warp.

It is hard to derive a metric for any of those properties in
a formal way, which is why we need to work with heuris-
tic design techniques in the following. In order to verify
the validity of these design steps, parameter optimization
and evaluation steps are discussed in Sec. 2.2.3 & 2.2.4.
All features are implemented using simple image process-
ing techniques to facilitate real-time processing.

Subregion Uniformity This feature evaluates properties
2 and 3 from above in an efficient and fast way: First, tem-
plate T is subdivided into N2

sub rectangular subregions of
equal size. Next, the intensity variability δi of each sub-
region is found by calculating the difference between the
brightest and darkest pixel. In case this local intensity dif-
ference is small, the respective subregion exhibits a uniform
texture. Two scalar feature are derived from the intensity
difference δi:

• Number of subregions for which δi < τsub, ΦCG
• Sum of δi for all subregions, ΦCΣ

Both features are normalized by 1
N2
sub

. Optimization (see
Sec. 2.2.3) yields Nsub = 5 and τsub = 20.

Frequency spectrum We tackle properties 1, 4 and 5 us-
ing a Discrete Fourier Transform (DFT), yielding T s cT .
Pixels in the 2D image T correspond to orthogonal periodic
base functions (spatial waves), which exhibit a spatial fre-
quency f and a spatial direction θ. Thus, T can be expressed
in terms of variables f and θ. High-frequency spatial waves
exhibit a low locality and may be caused by repetitive struc-
tures. Very low frequency components have a high locality,
but exhibit the same problem as uniform texture areas (prop-
erty 2). This is why a high share of mid-frequency compo-
nents is favored. In addition, the directionality of a texture
can be found based on the spatial direction θ of waves.

We integrate |T| (f, θ) respectively over θ and f , yield-
ing two 1D-histograms: One for the spatial frequency dis-
tribution Hf , and another one for the spatial direction of
waves Hθ. Histogram Hθ is normalized to

∑
bins Hθ = 1

and only considers pixels for which f ∈ [fs, fe]. The num-
ber of bins is set to 18, providing a resolution of 10◦. Three
scalar features are extracted from histograms Hf and Hθ:

• Share of mid-range frequency components for f ∈
[fs, fe], ΦFTE =

∫ fe
fs
Hf

• Equipartition of direction histogram Hθ, expressed by
the variance of fill-levels ΦFTVAR θ

• Histogram peak comparison, yielding ΦFT∆θ

Optimal values for the parameters are found by optimization
(see Sec. 2.2.3), which yielded for the JD algorithm:

fs = 0.019s, fe = 0.11s,

with template size s = 1
2

√
w2 + h2, where w, h are the

width and height of the template. For “peak comparison”,
we compare the difference of the strongest and k-strongest



peaks in a histogram, normalized by the strongest peak. It
serves as quick estimate of the histogram distribution. Typ-
ically, we use k = 3 for an 18 bin histogram.

Edge image An edge image as generated by the Sobel op-
erator [19] shows edge strengths and directions in an image.
Edges are borders between areas with a uniform intensity
value. The edge strengths and directions are an indication
for the uniformity property (2) or the directionality prop-
erty (4), respectively. We generate a global edge direction
histogram HSθ from the Sobel-filtered image. Finally, two
scalar features are calculated:

• Global sum of edge strengths on template, ΦSΣ

• Peak comparison in histogram HSθ, yielding ΦS∆θ

Intensity histogram Finally, we design a feature extrac-
tor evaluating properties 2 and 3 based on the image inten-
sity histogram. It yields features ΦHC , ΦHVAR and ΦH∆ .
We do not discuss these features here in detail, as they do
not belong to the top features identified in Sec. 2.3.4.

2.2.2 Analytic Features

Analytic features are derived from the tracking equations
and may thus be justified by construction. However, be-
fore they can be calculated, a tracker needs to exist. In the
case of the JD algorithm, this means that a time-consuming
training step must be performed, rendering the correspond-
ing features unfeasible for real-time applications.

Shi and Tomasi [18] discuss the problem of identifying
textures which are suitable for tracking, and come up with
an analytic method applied to their own tracking algorithm.
Their basic tracking equation is

Zd = e, (3)

with square tracking matrix Z, deformation parameters d
and error image parameters e. The authors argue that track-
ing only works well if Eq. (3) can be solved reliably and
investigate the eigenvalues ofZ. A vanishingly small eigen-
value means that Z is not of full rank and gets “blind” for
pose changes along the corresponding eigenvector. Addi-
tionally, Eq. (3) is only well-conditioned if the eigenval-
ues do not differ by several orders of magnitude. In [18],
a template is accepted if the smallest eigenvalue is above a
pre-defined threshold. The present work uses the smallest
eigenvalue directly as feature ΦSHI. While the Shi-Tomasi
feature is only analytically justified for the tracking algo-
rithm presented in [18], it may also be applied to similar
tracking algorithms using first order approximation.

We apply the idea of Shi and Tomasi to the IC and JD al-
gorithms and investigate the conditioning of the respective
tracking matrices using singular values. Matrix A (see [11,
Eqn. 2]) is considered for JD, and for IC, we regard the
steepest descent images (see [1, Fig. 2]). The following val-

ues are taken as template features:

• Smallest and largest singular values of steepest descent
image, ΦSDσS and ΦSDσL
• Ratio of these singular values, ΦSDσSL
• Largest singular value of first JD matrix, ΦJDσL
• Mean of largest singular values of JD tracking matrices

(JD uses a set of tracking matrices), ΦJDσL
• Ratio of smallest and largest singular value, ΦJDσSL

2.2.3 Parameter Optimization

In the above discussion about feature extractors (Sec. 2.2.1
& 2.2.2), several parameters or coefficients were intro-
duced, whose values still have to be picked. Obviously
they should be chosen such that the corresponding feature
provides most information about tracking quality. Thus,
we use a large training dataset of N templates (Tk)Nk=1

and choose parameters p such that the correlation of ρ of
one feature’s values (Φp

?,k)
N
k=1 with the quality measures

(Qk)Nk=1 is maximized:

popt = argmax
p

∣∣∣ρ((Φp
?,k)

N
k=1, (Qk)Nk=1

)∣∣∣ (4)

The qualities (Qk)Nk=1 are obtained according to Eq. (2).
Because of computational effort, only up to two parameters
are optimized simultaneously and on a per-feature basis. A
grid search is performed in order to solve Eq. (4).

2.2.4 Evaluation of Feature Performance

As stated earlier, each feature’s significance must be
checked by testing it on a large database of templates. Here,
only the individual significance is considered, which means
that no statement can be made about redundancies between
features. We use a general dataset of N = 2600 templates,
each 75× 75 pixels in size. The dataset comprises arbitrary
textures from indoor and outdoor scenes, some of which are
shown in Fig. 2.

For each template in the dataset (Tk)Nk=1, the feature vec-
tor and quality measure are evaluated, yielding (Fk)Nk=1 and
(Qk)Nk=1 according to Eq. (2). The significance of a feature
Φ? (i.e. an element of vector F) is expressed by the corre-
lation coefficient ρ between feature values (Φ?,k)Nk=1 and
quality measures (Qk)Nk=1. A value of |ρ| = 0 indicates
thatΦ? is a useless feature, whereas for a linear dependence,
|ρ| = 1. One weakness of the correlation coefficient is that
it is suboptimal for uncovering nonlinear dependencies.

The absolute correlation coefficient is shown in Fig. 3,
using the above dataset and two different tracking algo-
rithms. For the JD algorithm, while most features exhibit
a medium or low correlation, there are two features with
|ρ| > 0.6, namely ΦCG and ΦHVAR . Low-correlated fea-
tures might still be useful when combined with other fea-



tures (Sec. 2.3). For the IC algorithms, all correlation coef-
ficients are rather low, with a maximum |ρ| ≈ 0.3. While
in that case individual features are almost useless, feature
combination yields relevant results (see 2.3.2).
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Fig. 3. Correlation coefficient between individual features Φ? and
tracking qualityQ for the JD and IC algorithms

2.3. Fast Prediction of Template Quality

Individual template features from Sec. 2.2.1 and 2.2.2
are not significant enough to predict tracking quality, see
Fig. 3. They need to be combined in some way, using for
instance a machine learning method. Features are used to
calculate a template score S, which serves as an estimate
for the tracking quality Q. This is based on the assumption
that there exists a function f such that

Q ≈ S = f(F). (5)

We use Support Vector Regression (SVR) to find function
f . The calculation of the template score is faster by several
orders of magnitude than measuringQ by extensive evalua-
tion (see Sec. 2.1). Fig. 1 illustrates how the both phases of
the template rating system work together.

2.3.1 Training Phase

During the training phase, which is performed only once,
function f relating template score and features is found us-
ing supervised learning. A training set of templates is re-
quired, which is made up of 50% of all templates of the
dataset mentioned in Sec. 2.2.4, randomly selected. For
each template, the feature vector F is extracted and the
qualityQ is measured. They serve as the training data for an
SVR regressor, with predictors F and target values Q. The
template score can therefore be at most as meaningful asQ,
underlining the importance of the measurement procedure
in Sec. 2.1. Typically, SVR algorithms work with normal-
ized data in the range [−1; 1]. Because of some scattered ex-
treme values, we normalize predictors and target variables
such that they exhibit a mean of 0 and a variance of 1.

SVR is a modification of Support Vector Machines for
regression, and capable of dealing with nonlinearities. In
recent years, support vector based machine learning meth-
ods showed great performance on many problems, which

is why we chose it here. We use the LIBSVM [6] library,
which implements, among others, ν-SVR [17]. Regressor
training yields an SVR model, which defines function f .
The regressor function f is solely derived from the training
data, which should therefore be as representative as pos-
sible. Additionally, SVR is known to generalize well and
does not tend to create overfitted models.

There are a few parameters for the SVR training, which
must be specified a priori. Optimal values are found during
supervised learning by maximizing the correlation between
S and Q. The most important parameters are the cost pa-
rameter for errors c and the coefficient for the radial kernel
basis function γ. All other parameters are left at the de-
fault values. Optimization with built-in tools from LIBSVM
yields: c = 23, γ = 2−5.

2.3.2 Runtime Phase

This part of the proposed system runs online within a track-
ing system. It provides a lightweight and fast mean to esti-
mate the tracking quality of templates. For systems such as
SLAM (Simultaneous localization and mapping), new tem-
plates become available constantly, and their score (i.e. es-
timated tracking quality) must be determined in real-time.
Template rating and selection is performed as follows:

• Define possible templates (candidate templates)
• Extract feature vector F for each candidate template
• Calculate score S = f(F) for each candidate template
• Select templates with highest scores for tracking

Template quality is estimated rapidly using S, and the time-
consuming measuring step for Q is not necessary.

2.3.3 Optimal Template Size

Besides the position of a template on an object, often there
is also a free choice of template size g. Trackers can use
sub-sampling, such that the template size does not influence
the complexity. Of course, g must lie within a certain range,
or even in a discrete set of possible sizes G. Depending
on the size, obviously, different parts of an object’s texture
appear in the template, so in general, tracking quality Q
changes for different values of g. The size selection is per-
formed online, i.e. within the runtime phase, which means
that only the template score S is available. The optimal size
g ∈ G for a size-dependent template Tg is chosen such that
S becomes maximal:

gopt = argmax
g∈G

Ssize=g = argmax
g∈G

f(F(Tg)) (6)

Features from Sec. 2.2 are designed such that if g is
changed while the picture within the template region is
scaled equally, feature vector F and consequently score S
remain constant.



2.3.4 Feature Selection

Features from Sec. 2.2.1 exhibit redundancies, as they were
designed with similar ideas in mind. In the following, we
investigate if there is a small subset of features yielding sim-
ilar prediction performance as the complete feature set. A
smaller subset reduces the computational requirements for
the online template rating process. Again, a large number of
N templates is required for evaluation along with the mea-
sured tracking qualities Q. The templates are assigned ei-
ther to a training or a testing dataset.

The optimal subset of features with a given size can be
found by training a regressor for each possible feature com-
bination and selecting the best one. However, this is a very
time-consuming process, which is why a greedy but much
faster approach is presented here. Assume that an optimal
subset of features Fi of size i is known. The optimal subset
of features of size i+1 is found by training k regressors us-
ing features Fi plus one of the remaining k features on the
training dataset. Evaluation of the regressor performance on
the testing dataset yields the locally optimal subset of fea-
tures Fi+1 of size i+ 1. The process is repeated until there
are no more features left. To start the iteration, F1 consists
of the single feature with the best prediction performance.

We choose to evaluate regressor performance based on
the prediction reliability pok with ε = 0.02 (see Sec. 3.1).
Fig. 4 shows pok over the number of features used for re-
gression. The features based on the JD tracking matrix
are not included, because they cannot be used for real-time
processing anyway. Regressor performance with the de-
scribed greedy feature selection is shown by the red curve,
whereas the dashed blue curve depicts the performance
when features are added based on the largest correlation co-
efficient |ρ|. One can see that 4 features, selected by the
greedy method, are sufficient for prediction with a close-to-
maximum reliability of pok = 0.78. The correlation-based
selection method achieves this reliability only with 9 fea-
tures. The four identified “top-features” are: ΦCG , ΦSΣ ,
ΦFTE and ΦS∆θ . As outlined in Sec. 2.2.1, except for ΦFTE ,
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Fig. 4. Prediction reliability for JD over number of features. Two
different methods for feature subset selection are used (see text).
The feature added during each step is printed in the plot.

these features are constructed using very simple and fast op-
erations. Note that ΦHVAR , which showed a high correlation
in Fig. 3, does not offer a great gain in prediction reliability
and is only chosen as the fifth feature.

3. Results
3.1. Prediction Accuracy for Tracking

In a first experiment, we investigate the prediction accu-
racy of the proposed method for classic tracking with the JD
and IC algorithms. The SVR predictor is applied to a testing
set of ca. 1300 templates as outlined in Sec. 2.3.2, yielding
a score S for each template. (The testing set is disjoint from
the training set used in Sec. 2.3.1). Next, the tracking be-
havior of all templates is measured by running 200 tracking
trials, as outlined in Sec. 2.1. The resulting quality Q is
taken as the ground truth. Fig. 2 shows 18 templates, along
with quality measures Q and scores S for JD.

The prediction error for a template k is the difference be-
tween prediction and ground truth: Ek = Sk − Qk. Fig. 5
shows the probability density function (pdf) of Ek∀k. Re-
gressors are trained independently for the two shown quality
measures Q and Qr. Note that this plot is based on a large
dataset (1300 patches) and a total of 1300 · 200 = 260000
tracking experiments. Integration of the pdf in the inter-
val [−ε,+ε] yields the probability pok of prediction error
|E| ≤ ε. Tab. 1 lists some values for pok and shows that the
predictor for the tracking qualityQworks accurately for the
JD algorithm: An error value of less than ±0.05 (or 5%, as
Q ∈ [0, 1]) is observed for 91% of all tested templates. For
IC, a larger, but still acceptable prediction error is on hand.

3.2. Performance of GEPARD Tracking System

Second, we apply our novel method for template selec-
tion to the GEPARD tracking-by-detection system [9]. It
was designed for fast perspective patch rectification and
makes use of an online learning phase during which the sys-
tem selects a low number of reference templates on the ob-
ject. Afterwards, these templates are searched for in the cur-
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Fig. 5. Probability density function of the prediction error for
tracking algorithms JD, IC and for quality measuresQ &Qr



UsingQ UsingQr

Accuracy ε JD IC JD IC
p

o
k

±0.05 92% 55% 62% 43%
±0.10 95% 80% 90% 67%
±0.20 98% 94% 98% 87%

Table 1. Prediction reliability pok with regressors trained for two
tracking algorithms and the two presented quality measures. pok

denotes how often the prediction lies within the given accuracy
range (or allowable error).

rent image, using the following steps: First, a very coarse
initial pose is estimated around Harris interest points. Next,
the initial pose is refined with the JD algorithm. Upon suc-
cess, the exact pose and patch identity of reference tem-
plates in the current image are know, and the object pose
can be derived. If the refinement step is unsuccessful or
inaccurate, detection of the respective reference template
fails. The performance of the system therefore extremely
benefits from a template that supports the JD algorithm.

In our experiments, the system is tested on real-world
video sequences, showing objects with a planar textured
surface, see Fig. 6. The object pose is varied within a
wide range and even driven beyond the known limitations
of GEPARD. Ground truth data is available for the object
pose in 3D world coordinates, using a commercial tracker
system [16]. The pose is converted into 2D image coor-
dinates, which are used to verify the tracking results. The
LEDs installed on the object for the commercial tracker sys-
tem are ignored by GEPARD.

We compare four different methods for the selection of
reference templates: First, two naive selection schemes are
considered. N reference templates are selected around the
N strongest Harris interest points on the object (“strong,
no rating”), or the most robust ones (“robust, no rating”).
The latter method was used previously in GEPARD, see be-
low. Second, we present results for template selection with
our new proposed approach. Templates still need to be se-
lected around Harris points for the initial pose estimation
step, so we generate a set of candidate templates around in-
terest points with a high strength or robustness. Out of this
set, we selectN templates with the highest score S (“strong,
rating” and “robust, rating”). “Robust” interest points are
found by synthetically warping the object texture and iden-
tifying points which appear in the majority of views. The
method ensures a high rediscovery rate of Harris points, but
may be too slow for real-time systems.

Tab. 2 shows detection results for six sequences of an av-
erage length of 400 frames each. Two relevant performance
measures are given: The average number of successfully de-
tected templates which were confirmed by the ground truth
Tgood, and the detection rate Fgood, i.e. the share of frames
for which at least one template was successfully found. The
tested setup usesN = 5 reference patches, so Tgood ≤ 5. A
typical size for the set of candidate templates is 15. Com-
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Template Rating No Yes No Yes
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mv 83 85 75 84
sf1 87 88 86 89
sf2 95 96 91 97
mat1 77 82 75 79
mat2 78 78 53 78
pci 74 70 59 57
Average 82 83 73 81
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Template Rating No Yes No Yes
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mv 2.49 2.81 2.17 2.35
sf1 2.60 3.39 3.38 3.65
sf2 3.25 3.50 3.45 3.60
mat1 2.63 2.93 2.30 2.34
mat2 2.13 2.37 1.35 1.85
pci 1.75 1.81 1.64 1.43
Average 2.48 2.80 2.38 2.54

Table 2. Comparison of GEPARD [9] performance with and with-
out the proposed method for “Template Rating”. Interest points
(“IP”) are selected using Harris response (“Strong”) or using the
slower robustness evaluation (“Robust”, see text). The number of
reference templates is set to 5, so Tgood ≤ 5.

paring “robust” interest point selection without and with rat-
ing, a clear increase of Tgood of up to 0.8 is observed, show-
ing the benefits of template rating. This translates to faster
or more reliable object pose detection. For the “strong”
interest point selection method, which is better suited for
real-time applications, template rating increases the detec-
tion rate Fgood by 8% on average. In some sequences naive
template selection works considerably worse, and a larger
performance gain of up to 25% is achieved by template rat-
ing. Only in one case (sequence “pci”) a small performance
drop is observed. This can be explained by the low vari-
ety of candidate templates, which are mainly located in the
text block (see Fig. 6 bottom right). The Wilcoxon rank-
sum test [10] applied to the number of detected templates
per frame for all sequences combined confirms an improve-
ment with our method at 2% significance level.

Some templates from the tested sequences are depicted
in Fig. 7, along with their predicted score. Note how the
system rejects templates with large uniform areas and struc-
tures which allow no reliable estimation of the image warp.

3.3. Runtime

Feature extractors were implemented in non-optimized
C++ using the OpenCV library. Runtime of the four
“top features” discussed in Sec. 2.3.4 is measured using a
2.60 GHz Intel Core 2 Duo system with 3 GB RAM. Rat-
ing one template takes 0.9 ms for feature extraction and
score prediction. The individual extractors require between
0.03 ms and 0.6 ms each, whereat the DFT is the slowest.



Fig. 6. Reference frames for sequences mv, sf1, mat2 and pci.
Videos sf2 and mat1 have their own reference frames, but use the
same textures as sf1 and mat2. Templates selected by the “strong,
rating” experiment (Tab. 2) are indicated by a green box.

S = 0.60 S = 0.54 S = 0.53 S = 0.52 S = 0.50 S = 0.49

S = −0.17 S = −0.17 S = −0.17 S = −0.15 S = −0.10 S = 0.20

Fig. 7. Templates from tested sequences along with scores S (nor-
malized to [−1; 1]). The first row shows good templates, whereas
the second one shows bad ones rejected for tracking.

4. Conclusion

We proposed a predictor for tracking quality on the basis
of specifically designed fast features. It allows to find good
templates on a given texture for reliable tracking in real-
time, which is especially important for applications with
online template selection. A single template can be rated
in less than 1 ms. During training, the approach uses a
quality measure obtained from experiments which consid-
ers both convergence rate and and speed. A small set of
four “top-features” is found to be sufficient for reliable pre-
diction. These features are based on a uniformity measure
of template subregions (ΦCG , ΦCΣ ), the Sobel-filtered tem-
plate (ΦS∆θ ) and its spatial frequency spectrum (ΦFTE ). The
prediction error for Jurie and Dhome’s tracker [11] is small
(less than 10% for 95% of templates) and still acceptable
when using the inverse compositional [1] tracking algo-
rithm. We demonstrated our method on simulated tracking
experiments as well as on real-world videos and showed its
superiority to naive template selection approaches.

Acknowledgement This work was supported in part
within the DFG excellence initiative research cluster Cogni-
tion for Technical Systems – CoTeSys and by the Bayrische
Forschungsstiftung. The authors would like to thank Ezio
Malis (INRIA) and Vincent Lepetit (EPFL) for their advice
and feedback.

References
[1] S. Baker and I. Matthews. Lucas-kanade 20 years on: A

unifying framework. IJCV, 56(3), Feb. 2004.
[2] S. Benhimane, A. Ladikos, V. Lepetit, and N. Navab. Linear

and quadratic subsets for template-based tracking. In CVPR,
2007.

[3] S. Benhimane and E. Malis. Real-time image-based track-
ing of planes using efficient second-order minimization. In
IROS, 2004.

[4] J. Buenaposada and L. Baumela. Real-time tracking and es-
timation of plane pose. In ICPR, 2002.

[5] G. Carneiro and A. Jepson. The distinctiveness, detectability,
and robustness of local image features. In CVPR, 2005.

[6] C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[7] F. Dellaert and R. Collins. Fast image-based tracking by se-
lective pixel integration. In ICCV Workshop of Frame-Rate
Vision, 1999.

[8] G. Hager and P. Belhumeur. Efficient region tracking with
parametric models of geometry and illumination. PAMI,
20(10), 1998.

[9] S. Hinterstoisser, O. Kutter, N. Navab, P. Fua, and V. Lepetit.
Real-time learning of accurate patch rectification. In CVPR,
2009.

[10] M. Hollander and D. Wolfe. Nonparametric statistical meth-
ods. Wiley, 2nd edition, 1999.

[11] F. Jurie and M. Dhome. A simple and efficient template
matching algorithm. In ICCV, 2001.

[12] E. Loutas, N. Nikolaidis, and I. Pitas. Evaluation of tracking
reliability metrics based on information theory and normal-
ized correlation. In ICPR, 2004.

[13] B. Lucas and T. Kanade. An Iterative Image Registration
Technique with an Application to Stereo Vision. In IJCAI,
1981.

[14] O. Mac Aodha, G. J. Brostow, and M. Pollefeys. Segmenting
video into classes of algorithm-suitability. In CVPR, 2010.

[15] K. Nickels and S. Hutchinson. Estimating uncertainty in ssd-
based feature tracking. Image and vision computing, 20(1),
2002.

[16] PTI Inc. Visualeyez vz 4000. http://www.ptiphoenix.com/.
[17] B. Scholkopf, A. J. Smola, R. C. Williamson, and P. L.

Bartlett. New support vector algorithms. Neural Compu-
tation, 12(5), 2000.

[18] J. Shi and C. Tomasi. Good features to track. In CVPR, 1994.
[19] I. Sobel and G. Feldman. A 3x3 isotropic gradient operator

for image processing. Stanford Artificial Project (talk), 1968.
[20] K. Zimmermann, J. Matas, and T. Svoboda. Tracking by an

optimal sequence of linear predictors. PAMI, 31(4), 2009.


