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Heterogeneous Domain Adaptation and
Classification by Exploiting the Correlation

Subspace
Yi-Ren Yeh, Chun-Hao Huang, and Yu-Chiang Frank Wang

Abstract—We present a novel domain adaptation approach for
solving cross-domain pattern recognition problems, i.e., the data
or features to be processed and recognized are collected from
different domains of interest. Inspired by canonical correlation
analysis (CCA), we utilize the derived correlation subspace
as a joint representation for associating data across different
domains, and we advance reduced kernel techniques for kernel
CCA (KCCA) if nonlinear correlation subspace are desirable.
Such techniques not only makes KCCA computationally more
efficient, potential over-fitting problems can be alleviated as
well. Instead of directly performing recognition in the derived
CCA subspace (as prior CCA-based domain adaptation methods
did), we advocate the exploitation of domain transfer ability in
this subspace, in which each dimension has a unique capability
in associating cross-domain data. In particular, we propose a
novel SVM with a correlation regularizer, named correlation-
transfer SVM, which incorporates the domain adaptation ability
into classifier design for cross-domain recognition. We show that
our proposed domain adaptation and classification approach can
be successfully applied to a variety ofcross-domain recognition
tasks such as cross-view action recognition, handwritten digit
recognition with different features, and image-to-text or text-
to-image classification. From our empirical results, we verify
that our proposed method outperforms state-of-the-art domain
adaptation approaches in terms of recognition performance.

Index Terms—Canonical correlation analysis, domain adapta-
tion, reduced kernels, support vector machine

I. INTRODUCTION

RESEARCHERS in image processing and computer vi-
sion communities have shown significant progresses on

active issues like detection and recognition of objects, actions,
or events in images and videos. The commonly underlying
assumption is that both training and test data for addressing
the above tasks exhibit the same distribution or are drawn
from the same feature spaces (i.e., the same feature domains).
When the distribution of the data changes, or when the feature
domains for training and test data are different, one cannot
expect the resulting recognition performance to be satisfactory.
This is because the models learned with data in one domain
would fail to predict the test data in another. Unfortunately, in
many real-world applications, re-collecting training examples
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(a)  Cross-camera action recognition

(b) Cross-modal classification

Fig. 1. Our approach of domain adaptation and two application. Note
that instances in circles and triangles are data in the source and the
target domain, respectively. We aim at utilizing labeled training data
(colored circles) at the source domain and unlabeled data pairs (in
gray) from both domains for recognizing testing data (in white) in
the target domain.

at different domains and observing the corresponding learning
models might not be practical. Take action recognition using
surveillance cameras for example, one typically extracts the
features and designs the classifier using training data captured
by one camera. However, the observed features and classifi-
cation models might not generalize well if the test data are
captured by another camera (e.g., at a different view).

Since re-collecting training data at different domains of
interest is not practical, transfer learning aims at transferring
the knowledge of the model learned from the source domain
to that in the target domain, so that the unseen test data at
the target domain can be predicted accordingly [1]. Among
various scenarios of transfer learning, domain adaptation
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addresses the problem in which the same learning tasks need
to be solved across different domains [2], [3], [4], [5], [6], [7],
[8], [9]. Typically, one have labeled data at the source domain
for training, few or no labeled labeled data are available at
the target domain, but unseen test inputs at the target domain
need to be recognized or retrieved. For example, recognizing
actions across different camera views, determining the identity
of input sketch images using photo ones as the gallery set,
or retrieving relevant images using text as queries can all
be considered as domain adaptation problems. To solve such
problems, one generally needs to design learning models at the
target domain (or at a common feature space) by leveraging
labeled data observed at the source domain. Nevertheless, the
challenge of domain adaptation comes from the fact that the
source and target domain data are either drawn from different
distributions of the same feature space [2], [10], [11], or the
features for data at different domains are completely different
[3], [4], [5], [6], [8].

A. Our Contributions
In this paper, we present a novel domain adaptation frame-

work for cross-domain recognition. We advance canonical
correlation analysis (CCA) [12] for deriving a joint feature
space for associating cross-domain data, and we propose a
novel support vector machine (SVM) algorithm which incor-
porates the domain adaptation ability observed in the derived
subspace for improved recognition. As shown in Figure 1, we
consider the scenarios in which only labeled data in the source
domain (i.e., those shown in different colors in Figure 1) and
unlabeled data pairs (i.e., those shown in gray in Figure 1)
across different domains are available during training.

The above unlabeled data pairs are utilized to observe the
joint feature space for domain adaptation. As discussed in
Section III, we construct a shared feature representation in
terms of correlation subspaces as the domain adaptation model.
In practice, unlabeled instance pairs from both source and
target domains can be actions simultaneously captured by
different cameras [6], [7], [8], or the same objects observed
in different lighting, resolution, etc. conditions [3], [4], [5].
Once the feature space for domain adaptation (i.e., the cor-
relation subspace) is learned, classifiers can be trained using
projected source domain labeled data in this space. Finally,
target domain test data (e.g., white triangles in Figure 1)
can be projected into this feature space and be recognized
accordingly.

It is worth noting that, Since the shared feature represen-
tation for domain adaptation using standard CCA might not
be sufficient for practical cross-domain classification tasks,
we further consider kernel CCA (KCCA) for deriving the
nonlinear correlation subspace. In order to alleviate possi-
ble overfitting problems using KCCA, the reduced kernel
technique [13] is applied to avoid possible trivial solution
and potential over-fitting problems. In addition, the reduced
kernel approach also allows one to reduce the storage and
computational costs, since only a portion of the kernel matrix
is required when implementing KCCA.

As for our proposed SVM model for cross-domain recog-
nition, we advocate the exploitation of the domain adaptation

ability in the resulting correlation subspace. As detailed later in
Section IV, we propose a novel linear SVM (i.e., correlation-
transfer SVM) which incorporates the domain adaptation abil-
ity when separating data from different categories using the
associated correlation information. With the ability to bridge
source and target domains when designing the classification
model, our method is expected to achieve improved classifi-
cation performance. Finally, we note that our proposed domain
adaptation and classification algorithms can be regarded as a
heterogeneous domain adaptation framework. This is because
our framework is able to deal with more general transfer
learning cases in which the distributions, feature domains, or
feature dimensions at source and target domains are different
(e.g., image vs. text in Figure 1(b)). Later in our experiments,
the effectiveness and robustness of our proposed method will
be verified.

II. RELATED WORK

Generally, methods to address domain adaptation problem
can be divided into two categories: instance and feature-based
approaches. We now briefly review them as follows.

A. Instance-based Approaches

Instance-based approaches focus on source and target do-
main data with the same feature representation but drawn
from different distributions. Its purpose is to estimate the
importance of each source domain data instance, so that it
can be re-weighted accordingly when constructing the learning
model for predicting the target domain data. For example,
Huang et al. [14] proposed a kernel-mean matching (KMM)
algorithm, which observes the importance of source domain
data by matching the means between the source and target
domain data in a reproducing-kernel Hilbert space (RKHS).
To alleviate possible biases when performing cross-validation
across domains, Sugiyama et al. [15] proposed a unified
framework which not only learns such importance via the
minimization of Kullback-Leibler divergence but also cross-
validates the estimated data at the target domain. Nevertheless,
the methods of this category work on the premise that the
source and target domain data are presented in the same feature
space and thus the same feature dimension.

B. Feature-based Approaches

Different from instance-based approaches which favor only
cross-domain data at the same feature space, feature-based
approaches aim at deriving a joint feature representation
(e.g., a manifold or subspace) across domains. Many visual
domain adaptation methods (including ours) are within this
category. For example, methods based on the extraction of
spatio-temporal descriptors and the construction of bag-of-
words models [16], [17] have been proposed to recognize
actions in videos. Gopalan et al. [4] characterized the source
and target domain/view data as two points on a Grassmann
manifold, and proposed to sample points between them (along
the geodesic) as the shared feature representation for cross-
camera action recognition. Similarly, Li and Zickler [8] de-
rived discriminative intermediate virtual views by maximizing
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Fig. 2. Domain adaptation via CCA [2]. Note that Ps and Pt

are the projection matrices produced by CCA, which maximize the
correlation between projected data in the derived subspace X c.

mutual information, and the shared representation can be
applied to learn and predict unseen actions at the target
view. Besides exploring the Grassmann manifold, Farhadi
and Tabrizi [6] proposed to learn split-based features from
source-view video frames based on local data structure. They
converted such features to the corresponding frames at the
target view, so that actions at the target view can be encoded
and recognized accordingly. Thus, the assumption of their
approach is that the local data structures at two domains
are consistent. Saenko et al. [3] advocated a metric learning
framework to model the visual domain shift (e.g., changes
in resolution, lighting, viewpoint, etc). In [18], they further
extended their work, so that source and target domain data in
different dimensional feature spaces can be handled. Recently,
Liu et al. [7] advocated to construct a bilingual codebook as
a shared feature representation for source and target domain
data. With unlabeled data collected from both domains, their
approach learned a shared codebook for action data captured
by two cameras using a bipartite graph, and the bilingual
words were obtained by spectral clustering. Although this
approach does not require similarities of local data structure
for data in different domains and allows feature dimensions
to be different, the derived feature attributes in the joint
representation are considered to be equally important, which
may not be preferable if the (shared) features extracted from
each domain have uncoordinated contributions.

III. DOMAIN ADAPTATION VIA CANONICAL
CORRELATION ANALYSIS

A. Learning Correlation Subspace via CCA or KCCA

The idea of domain adaptation for solving cross-domain
classification tasks is to determine a common representation
(e.g., a joint subspace) for features extracted from source and
target views, so that the model trained at the source domain can
be applied to recognize test data at the target domain. Among
existing methods, canonical correlation analysis (CCA) is a
very effective technique. It aims at maximizing the correlation
between two variable sets [12], [19], and thus the derived
subspace can be applied as the common feature representation
for solving cross-domain classification problems.

For the sake of completeness, we briefly review CCA as
follows. Given two sets of n centered unlabeled observations
Xs = [xs1, . . . ,x

s
n] ∈ Rds×n and Xt = [xt1, . . . ,x

t
n] ∈ Rdt×n

(xsi ∈ Dsu and xti ∈ Dtu) in source and target views
respectively, CCA learns the projection vectors us ∈ Rds and
ut ∈ Rdt , which maximizes the correlation coefficient ρ:

max
us,ut

ρ =
us>Σstu

t√
us>Σssus

√
ut>Σttut

, (1)

where Σst = XsXt>, Σss = XsXs>, Σtt = XtXt>, and
ρ ∈ [0, 1]. As proved in [19], us in (1) can be solved by a
generalized eigenvalue decomposition problem:

Σst(Σtt)
−1Σ>stu

s = ηΣssu
s. (2)

Once us is obtained, ut can be calculated by Σ−1tt Σstu
s/η,

which has been dervied in [19]. In practice, regularization
terms λsI and λtI need to be added into Σss and Σtt to avoid
overfitting and singularity problems. As a result, one solves the
following problem instead:

Σst(Σtt + λtI)−1Σ>stu
s = η(Σss + λsI)us. (3)

Generally, one can derive more than one pair of projection
vectors {usi}di=1 and {uti}di=1 with corresponding ρi in a
descending order (i.e., ρi > ρi+1). Note that d is the dimension
number of the resulting CCA subspace, which is bounded by
the minimum value of ds and dt (i.e., the dimension number
of the CCA subspace is bounded by the minimum feature
dimension of the data in either domain). As a result, the
source and target view data (Xs and Xt) can be projected onto
this correlation subspace X c ∈ Rd. Figure 2 shows a CCA
example for cross-view action recognition. Given data of three
action classes in source and target views (X s and X t), CCA
determines projection matrices Ps = [us1, . . . ,u

s
d] ∈ Rds×d

and Pt = [ut1, . . . ,u
t
d] ∈ Rdt×d. Once the correlation

subspace X c ∈ Rd spanned by {vs,ti }di=1 is derived, unseen
test data at the target view can be directly recognized by the
model trained from the source view data projected onto X c.

Similar to SVM, the use of linear models for CCA might
not be sufficient in describing data when deriving the feature
subspace. To overcome this problem, nonlinear mapping via
kernel tricks can be applied to CCA and result in kernel CCA
(KCCA) [19]. Let φ be a nonlinear mapping from X to a fea-
ture space F , and the kernel function k(x, z) = 〈φ(x), φ(z)〉.
It also has been shown that the standard CCA projection
vectors us and ut can represented by the linear combination
of the data Xs and Xt [19]:

us = Xsαs and ut = Xtαt, (4)

where αs ∈ Rn and αt ∈ Rn are weighting vectors for Fs
and F t, respectively. Using the kernel trick, KCCA can be
formulated as follows:

max
αs,αt

ρ =
αs>KsKtα

t√
αs>K2

sα
s
√
αt>K2

tα
t
, (5)

where Ks = k(Xs,Xs) and Kt = k(Xt,Xt) are the kernel
matrices corresponding to the source and target data. As shown
in [19], deriving the solution to (5) is equivalent to solving the
following problem:

KsKtK
−1
t Ksα

s = λ2KsKsα
s
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or
KsKsα

s = λ2KsKsα
s

or
Iαs = λ2αs. (6)

Similar to standard CCA, αt can be determined by K−1
t Ksα

s

λ
[19]. From the above equations, it can be seen that if the
matrices Ks and Kt are invertible, the weighting vectors αs

and αt can be arbitrary vectors (with λ = 1) but result in
a trivial solution. To overcome this problem, techniques like
adding a additional regularization term or advancing reduced
kernels [13] have been proposed. Adding a regularization term
requires one to solve the following problem:

Kt(Kt + κI)−1Ksα = λ2(Ks + κI)α, (7)

where αt = (Kt+κI)
−1Ksα

s

λ . However, this might not
be preferable for large-scale problems due to the calcula-
tion/storage of a dense and large kernel matrix. In our work,
we apply the reduced kernel technique [13] if a kernel version
of CCA is needed. The use of reduced kernels allows us
to solve eigenvalue decomposition problems efficiently while
avoiding the over-fitting problem, as detailed in the following
subsection.

B. Reduced Kernel for KCCA

In kernel methods, the reduced kernel technique favors
large-scale problems in which the calculation of the full kernel
matrix is computationally expensive. The key idea of the
reduced kernel technique is to select a small portion of data
and to generate a small rectangular kernel matrix for replacing
the original full kernel matrix. Besides computationally more
efficient, since one does not require the full kernel matrix,
possible over-fitting or singularity problems can be avoided.

In the previous subsection, we have known that the pro-
jection vectors us and ut can represented by the linear
combination of the data Xs and Xt as in (4). We choose
to approximate the weighting vectors (i.e., αs or αt) by using
the linear combination of a subset of the original data, and
thus reduced kernels can be calculated accordingly. Let X̃s

and X̃t be subsets of Xs and Xt, we have

ũs = X̃sα̃s and ũt = X̃tα̃t, (8)

where α̃s ∈ Rñ and α̃t ∈ Rñ are the weight coefficients
for new/approximated linear combinations, respectively. As a
result, ũs and ũt will be the approximated solutions of (5).
To derive the reduced kernel matrices for KCCA, we apply
Nyström approximation [13], [20], [21] for the full kernel
matrix, i.e.,

k(Xs,Xs) ≈ k(Xs, X̃s)k(X̃s, X̃s)−1k(Xs, X̃s)>, (9)

where k(Xs, X̃s) = K̃s is a reduced kernel matrix. Thus, we
have

k(Xs,Xs)α ≈ k(Xs, X̃s)k(X̃s, X̃s)−1k(Xs, X̃s)>α

= k(Xs, X̃s)α̃, (10)

where α̃ is an approximation of α via the reduced kernel
technique. By the approximation, we can replace the full

kernel matrices k(Xs,Xs) ∈ Rn×n and k(Xt,Xt) ∈ Rn×n
by the reduced kernel matrices k(Xs, X̃s) ∈ Rn×ñ and
k(Xt, X̃t) ∈ Rn×ñ, respectively. The reduced kernel version
for the KCCA (i.e., Rd KCCA) now solves the following
problem:

max
αs,αt

ρ =
α̃s>K̃>s K̃tα̃

t√
α̃s>K̃>s K̃sα̃s

√
α̃t>K̃>t K̃tα̃t

, (11)

where K̃s = k(Xs, X̃s) and K̃t = k(Xt, X̃t). For the
simplicity of represention, we re-express (11) by

max
αs,αt

ρ =
α̃s>ΣK̃st α̃

t√
α̃s>ΣK̃s α̃

s
√
α̃t>ΣK̃t α̃

t
, (12)

where ΣK̃st
= K̃>s K̃t, ΣK̃s = K̃>s K̃s, and ΣK̃t = K̃>t K̃t.

The same as (2), we can solve (12) via

ΣKst(ΣKtt)
−1Σ>Kst

α̃s = ηΣKss α̃
s. (13)

The reduced kernel method reduce the computational cost
from O(n3) to O(ñ3) (typically n � ñ). It has been shown
that reduced kernel not only can avoid the over-fitting but also
can approximate the solution of the full kernel matrix well.

C. Parameter Selection for KCCA

In our work, we use Gaussian kernel functions for all KCCA
or Rd KCCA, and thus we need to determine the parameter σ
when calculating the Gaussian kernels. Since only unlabeled
data pairs from both source and target domains are available
during the derivation of the KCCA (or Rd KCCA) subspaces
for domain adaptation, one cannot perform traditional cross-
validation to select the parameter. To address this issue, we use
k-mean clustering to divide these unlabeled data pairs into
k clusters as cross-validation data (we simply set k as the
number of classes to be recognized). In each validation fold,
we take k − 1 folds for generating the correlation subspace,
and we evaluate the correlation coefficient of the projections
of the remaining validation-fold data. This would indicate the
capability of the associated KCCA or Rd KCCA model in
describing cross-domain data in this subspace. Finally, we
choose the kernel parameter resulting the highest correlation
performance on these unlabeled data pairs.

IV. CORRELATION-TRANSFER SVM

A. Domain Transfer Ability of CCA

As discussed earlier, each dimension vs,ti in the derived
CCA subspace is associated with a different correlation coef-
ficient ρi. A higher ρi indicates a better correlation between
data projected from different domains, which results in a better
domain transfer ability for the associated dimension vs,ti in
domain adaptation. From the above observations, it is clear
that one should take domain transfer ability into consideration
when designing classifiers in the CCA subspace.

Figure 3 illustrates this issue by projecting source and target
view data onto different 2D correlation subspaces, in which
one subspace is associated with (vs,ti and vs,ti+1) with higher
ρ ' 0.9, and the other one is constructed by (vs,tj and vs,tj+1)
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Fig. 3. Projecting source and target view instances from the IXMAS
dataset into different correlation subspaces using CCA projection
vectors with different ρ.

with smaller ρ ' 0.7. The dash lines represent linear classifiers
learned from projected source view data (no labeled data in the
target domain is available). From Figure 3(a), we see that the
location of projected source and target data with the same label
are close to each other, since the two basis vectors correspond
to larger ρ values. On the other hand, as shown in Figure 3(b),
the distributions of projected source and target view data are
different due to a lower ρ. As a result, the classifier learned
from projected source view data (i.e., the dash lines) cannot
generalize well to the projected target view ones. In other
words, poorer domain transfer ability will result in increased
recognition error, even the classifier is well designed using the
projected source view data.

To overcome such limitations for CCA during domain
adaptation, we advocate the adaptation of the learning model
based on the associated domain transfer ability. Since support
vector machine (SVM) has been shown to be very effective
in solving classification problems, we propose a new SVM
formulation which particularly takes domain adaptation ability
into account, so that the proposed model can be applied to
address cross-view recognition.

B. The Proposed SVM Formulation

1) Classification in the CCA/KCCA subspace: Generally, if
the ith feature attribute exhibits better discrimination ability,
the standard SVM would produce a larger magnitude for the
corresponding model (i.e., a larger |wi|). As discussed earlier,
domain adaptation via CCA does not take the domain transfer
ability into consideration when learning the classifiers in the
correlation subspace. As a result, the recognition performance
might be degraded. To address this problem, we introduce a
correlation regularizer and propose a novel linear SVM for-
mulation which integrates the domain transfer ability and class
discrimination in a unified framework. Due to the introduction
of such ability, the generalization of our SVM for transfer
leaning will be significantly improved.

To incorporate domain adaptation ability into the SVM
formulation, we first modify the standard SVM as follows:

min
w

1

2
‖w‖22 + C

N∑
i=1

ξi −
1

2
r>Abs(w) (14)

s.t. yi(〈w,Ps>xsi 〉+ b) + ξi ≥ 1, ξi ≥ 0, ∀(xsi , yi) ∈ Dsl ,

where Abs(w) ≡ [|w1|, |w2|, . . . , |wd|] and r ≡ [ρ1, . . . , ρd]
is the correlation vector in which each element indicates the

correlation coefficient of CCA for each projection dimension.
Note that only labeled source domain data xsi ∈ Dsl is available
for training (not target domain data), and yi is the associated
class label. Parameters C and ξ are penalty term and slack
variables as in the standard SVM. We have Ps>xsi as the
projection of source domain data xsi onto the correlation
subspace Xc.

From (14), it can be seen that the proposed term r>Abs(w)
is introduced for model adaptation based on CCA, and it is
in terms of a similarity measure for r and w. In practice,
if a smaller correlation coefficient ρi is observed for the
ith dimension of the CCA subspace, the above formulation
would enforce the shrinkage of the corresponding |wi| and
thus suppresses the learned SVM along that dimension. On the
other hand, a larger ρi favors the contribution of the associated
|wi| when minimizing (14).

Since it is not straightforward to solve the minimization
problem in (14) with Abs(w), we seek the approximated
solution by relaxing the original problem into the following
form:

min
w

1

2
‖w‖22 + C

N∑
i=1

ξi −
1

2
(r� r)>(w �w) (15)

s.t. yi(〈w,Ps>xsi 〉+ b) + ξi ≥ 1, ξi ≥ 0, ∀(xsi , yi) ∈ Dsl ,

where � indicates the element-wise multiplication. We can
further rewrite (15) as:

min
w

1

2

d∑
i=1

(1− ρ2i )w2
i + C

N∑
i=1

ξi (16)

s.t. yi(〈w,Ps>xsi 〉+ b) + ξi ≥ 1, ξi ≥ 0, ∀(xsi , yi) ∈ Dsl .

We refer to (16) as our proposed SVM formulation. Recall
that 0 < ρi < 1 in CCA, so that the convexity of the
proposed objective function is guaranteed. It can be seen
that, depending on the derived correlation coefficients, the
formulation in (16) is effectively weighting each component of
the regularization term accordingly. As a result, this modified
SVM automatically adapts the derived classification model
w based on the domain transfer ability of CCA, and thus it
exhibits better generalization in recognizing projected unseen
test data in the correlation subspace (as confirmed by our
experiments). The decision function for classifying unseen test
data at target domain is shown as follows:

f(x) = sgn (〈w,Pt>xt〉+ b), (17)

where Pt projects the input test data xt from the target
domain onto the correlation subspace Xc, , and sgn(z) = 1 if
z > 0 and sgn(z) = -1 if z < 0.

2) A universal form of the correlation-transfer SVM: In
(14) or (16), we convert the standard SVM into an optimization
problem, which takes the correlation coefficients of CCA into
account when separating data between different classes in
the resulting subspace. Our proposed SVM formulation thus
assigns pre-determined weights for different coordinates in the
CCA subspace. From (16), we see that each coordinate wi
is weighted by 1 − ρ2i , and this weighting function can be
illustrated in Figure 4(a). Without loss of generality, we further
reformulate our proposed SVM formulation as follows:
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min
w

1

2

d∑
i=1

Ψ(ρi)w
2
i + C

N∑
i=1

ξi (18)

s.t. yi(〈w,Ps>xsi 〉+ b) + ξi ≥ 1, ξi ≥ 0, ∀(xsi , yi) ∈ Dsl ,

where Ψ(ρ) is the weighting function. In additional to the
quadratic weighting function Ψ0(ρ) = 1 − ρ2, we consider
exponential and sigmoid functions as two types of weighting
functions for comparisons. For the exponential weighting
function, it has the following form:

Ψ1(ρ) = e−aρ,

where ρ is the correlation coefficient and a is the parameter
of Ψ1(ρ). The resulting exponential weighting functions with
different parameters a are plotted in Figure 4(b). In Ψ1,
we can see that the weight is decreasing remarkably when
the associated correlation coefficient ρ drops. This type of
weighting function will be of particular interest if only few
high correlation projection vectors can be utilized. As for the
sigmoid weighting function, it is determined as:

Ψ2(ρ) =
1

1 + eaρ
,

where a is the parameter controlling the slope of Ψ2(ρ), and
we plot this function with different parameters a in Figure 4(c).
Unlike prior quadratic or exponential weighting functions, the
sigmoid one Ψ2 exhibits additional flexibility in assigning
weights to control the shrinkage of w. Later in our experi-
ments, we will evaluate and choose proper weighting functions
for achieving the best performance in each classification task.

V. EXPERIMENTS

A. Datasets and Properties

In our experiments, we consider three datasets which ex-
hibit different properties (and difficulty) in terms of domain
adaptation. The first dataset is the IXMAS multiview action
dataset [22], which has been widely used to address cross-view
action recognition problems. This dataset contains 11 action
categories, with 36 instances per class (and thus n = 396
in total). For this dataset, we follow the feature extraction
settings as [7] did for comparisons, and thus the features
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Fig. 5. Example actions of the IXMAS dataset. Each row represents
an action at five different views.

in both source and target domains are of 1000 dimensions.
When applying this dataset for verifying the effectiveness of
our proposed framework, we have the scenario in which the
features extracted from both domains are of the same type and
ds = dt = 1000� n.

The second dataset we consider is the Multiple Features
Dataset from the UCI Machine Learning repository [23]. This
dataset consists of features of handwritten digits from ‘0’ to
‘9’, and each is represented by six different features. With this
dataset, our goal is to evaluate the recognition performance
when adapting models across different feature spaces. It is
worth noting that, we have ds (and dt) � n, which is very
different from the IXMAS multiview action dataset. For this
image recognition task, the use of this dataset allows us to
assess the ability of our proposed framework for adapting
information from one feature type to another, while both
features of interest are extracted from the image data.

Finally, as the most challenging case, we consider the
Wikipedia dataset [24] and address heterogeneous domain
adaptation problems. While more detailed data pre-processing
techniques and settings are described in the following sub-
sections, we note that we will verify the effectiveness and
robustness of our proposed method in solving cross-domain
(i.e., image vs. text) classification tasks using this dataset.

B. IXMAS Multi-View Dataset

This dataset contains videos of eleven action classes. Each
action video is performed three times by twelve actors, and the
actions are synchronically captured by five cameras (i.e., five
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A B C D E A B C D E A B C D E A B C D E A B C D E
cam0 ! 9.75 65.72 30.11 75.57 70.45 11.27 61.08 20.27 78.22 73.44 6.63 60.61 17.61 78.31 70.66 8.33 48.01 15.34 70.08 69.54
cam1 9.85 67.52 39.87 75.95 73.63 ! 9.66 57.95 25.09 76.04 73.03 9.94 56.91 21.21 76.61 70.75 9.56 47.44 24.15 71.31 68.33
cam2 8.71 63.92 31.72 75.76 71.51 7.67 62.51 32.86 75.01 70.61 ! 5.87 61.27 31.16 79.55 76.36 9.28 55.11 34.75 74.15 66.96
cam3 5.87 59.28 37.59 77.84 72.57 10.04 57.39 35.32 75.47 71.06 5.31 57.29 31.91 77.94 71.51 ! 10.13 45.51 24.72 74.05 66.21
cam4 7.01 57.48 37.59 75.38 72.12 9.09 55.02 34.75 74.05 69.54 9.28 57.29 42.05 77.65 74.24 10.7 53.13 30.21 74.24 69.24 !
Avg. 7.86 62.05 36.7 76.23 72.12 9.14 60.16 33.26 75.02 69.54 8.88 58.4 29.83 77.46 73.06 8.29 57.98 25.05 77.18 71.24 9.33 48.77 24.74 72.4 67.76

camera4camera0 camera1 camera2 camera3

Fig. 6. Performance comparisons on the IXMAS dataset. Note that each row indicates the source view camera (for training), and each
column is the target view camera for recognizing the action classes. We consider the methods of A: BoW without transfer learning [16], B:
BoBW [7], C: linear CCA + linear SVM, D: linear CCA + our SVM (with Ψ1(5)), and E: Rd KCCA + our SVM (with Ψ2(10)).
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Fig. 7. Average recognition rates on the IXMAS dataset across
different thresholds when deriving the CCA subspace. Note that our
proposed method does not require to select such thresholds during
domain adaptation.

views/domains), as shown in Figure 5. For fair comparisons
with [7] and other approaches, we extract descriptors defined
by [16] and describe each action video as a group of spatio-
temporal cuboids (at most 200). For each video, these cuboids
are quantized into N = 1000 visual words. As for data partition,
we randomly choose two thirds of the cross-domain instances
in each class as unlabeled data pairs for learning the CCA
subspace. The remaining labeled data in the source domain
are for training the proposed SVM, and those in the target
domain are for testing. We repeat the above procedure ten
times and report the average recognition performance.

To compare our performance with other approaches, we
consider the methods of standard SVMs learned at the source
view (i.e., using extracted BoW models without transfer learn-
ing), the bag-of-bilingual-words (BoBW) model proposed in
[7], and CCA [2]. We note that, the above three approaches
apply the standard SVM after deriving the feature represen-
tation for training/testing. The recognition results of different
approaches are shown in Figure 6.

From Figure 6, we see that the method without transfer
learning (i.e., columns A) achieved the poorest results as
expected. While the BoBW model (columns B) and the
approach of CCA (columns C) improved the performance
by determining a shared representation for training/test, the
integration of CCA with our proposed SVM (columns D)
achieved the best performance. Comparing the results shown
in columns B and D, although our SVM taking the correlation
of the source and target view data was able to improve the
recognition performance, it would be desirable to derive such

correlation from a correlation-based transfer learning approach
as our approach did. This explains why our approach combin-
ing CCA and imposing the resulting correlation coefficient into
the proposed SVM formulation achieved the best recognition
performance. It is worth noting that, comparing columns D
and E, the use of nonlinear CCA for domain adaptation did
not produce further improved recognition results. This is due
to the fact that the action data are of 1000 dimensions, but only
396 instances are available for training (2/3 for deriving CCA,
and 1/3 for training the CTSVM). For a high dimensional
space with the low density of instances, linear models are
expected to alleviate possible overfitting problems (i.e., the
curse of dimensionality) during domain adaptation, and thus
linear CCA with our proposed SVM achieved the the best
recognition.

To evaluate the effectiveness and robustness of our pro-
posed SVM, Figure 7 further compares our results with those
produced by CCA-based methods using predefined thresholds
for determining the dimensions of the resulting subspace. We
see that, for the case of linear CCA + linear SVM, while
higher thresholds for the correlation coefficient resulted in
lower dimensional subspace for domain adaptation, the use of
such smaller number of dimensions did not exhibit sufficient
domain transfer ability. On the other hand, if a lower thresh-
old was applied, the use of more feature dimensions might
incorporate redundant or noisy information, which actually
degraded the performance. Therefore, how to determine a
proper threshold would be a challenging task for such standard
domain adaptation approaches. From Figure 7, it can be
seen that our proposed SVM (with linear or nonlinear CCA)
consistently achieved improved or satisfactory performance
without the need to select a predetermined threshold.

Finally, we show the averaged value |wi| of each attribute
in the standard and our SVM models in Figures 8(a) and (b),
respectively. From Figure 8(a), we see that the standard SVM
aims at separating data in the correlated subspace without
considering the domain transfer ability, and thus we still
observe prominent |wi| values at non-dominant feature dimen-
sions (e.g., the 11th dimension). On the other hand, in Figure
8(b), our proposed SVM suppressed the contributions of non-
dominant feature dimensions in the correlated subspace, and
thus resulted in larger |wi| values for dominant feature dimen-
sions. The actual recognition rates for the two models were
59.85% and 65.91%, respectively. This observation verifies
that our proposed SVM model with the ability of learning
the domain transfer ability is preferable when solving cross-
domain classification tasks.
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Fig. 8. Comparisons of the averaged |wi| values: (a) standard
SVM and (b) our proposed SVM. The horizontal axis indicates the
dimension index of the correlated subspace (arranged in a descending
order using the associated correlation coefficients). The vertical axis
shows the index of the derived one-vs-one SVMs. The recognition
rates for these two approaches are 59.85% and 65.91%, respectively.

C. Multiple Features Dataset

The Multiple Features Dataset [23] contains ten classes
of handwritten numbers with 200 images per class. Thus, a
total of 2,000 images are available for training and testing.
These digits are represented in terms of six different types of
features and dimensions, which are Fourier coefficients (76),
profile correlations (216), Karhunen-Love coefficients (64),
pixel average (240), Zernike moments (47) and morphological
features (6) (the numbers in the parenthesis represent the
dimensionality of each feature). In contrast to the IXMAS
action dataset, the features of this dataset describe the images
in different perspectives, which can be viewed as heteroge-
neous features with different dimensionalities. We consider the
task of cross-domain classification as the domain adaptation
problem, in which the source domain data are available and
obtained from one of the feature spaces, while the target
domain represent another feature space where the test data are
presented. For this particular dataset, the features from source
and target domains are of different types but extracted from
the same images. This is different from the use of IXMAS
dataset where the features are the same but obtained by images
captured by different camera views. Therefore, the domain
adaptation problem is expected to be more challenging than
the prior task using the IXMAS dataset. It is worth noting that
some feature types are with low dimensionality, which implies
that the use of nonlinear domain transfer models might be
preferable (as confirmed later).

We shown the recognition results using different domain
adaptation approaches in Figure 9. It can be seen that, our
proposed method achieved the best performance, and the use
of Rd KCCA for domain adaptation consistently outperformed
that of linear ones. We note that, while the dimension of the
linear CCA subspace is bounded by the lower dimensional
feature representation (from source or target domain), the
above results verified that a nonlinear extension of CCA is
more capable of efficiently searching an effective correlation
subspace while performing the task of domain adaptation.
Similar to our prior tests on the IXMAS dataset, we also
observe that our method does not require the selection of CCA
threshold when deriving the subspace. This provides additional
robustness than other approaches. Finally, it is worth noting
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Fig. 9. Average recognition rates on the Multiple Features dataset
across different thresholds when deriving the CCA subspace. Note
that our proposed method does not require to select such thresholds
during domain adaptation.

that the nonlinear extension of CCA with our proposed SVM
outperformed the method of “linear CCA + nonlinear SVM”
in this experiment. This observation implies that deriving a
more effective feature space for domain adaptation is more
crucial than designing a more complex classifier in a standard
feature subspace.

D. Wikipedia Dataset

For the final part of our experiments, we consider a difficult
heterogeneous domain adaptation task using the Wikipedia
dataset [24], in which each data instance is with a text-image
pair. In our experiment, we consider five subject categories of
this dataset, which are art and architecture, biology, literature,
sport, and warfare. This is because the visual data of these five
categories are observed to exhibit lower intra-class variations
(i.e., more relevant to the corresponding subjects). We select
100 instances from each cateogry for our experiments. For the
textual representation, the features are derived from a latent
Dirichlet allocation (LDA) model [25], which describes each
textual instance by the probability of the topic assignment (and
thus results in a five-dimensional vector for our case). On the
other hand, the image data are represented by local descriptors
of SIFT [26], and they are converted by a bag-of-words (BOW)
model using the codebook constructed by k-means clustering
(k is set to 128). As a result, the dimension of the image data
is a 128-dimensional feature vector.

As for data partition for our implementation, we randomly
choose two thirds of instances as unlabeled data, and the
rest are labeled data for training purposes. Once the corre-
lation subspace is derived, we train one-vs-one SVMs using
projected source-domain data, and thus the projected target
domain data can be recognized accordingly. We repeat the
above setting for each combination of source-target pair, and
report the average performance of twenty runs.

To demonstrate the effectiveness of our method, we per-
form single domain classification (i.e., text-to-text and image-
to-image classification tasks) as baselines. The results are
95.40% and 56.20% for text-to-text and image-to-image tasks,
respectively. For the cross-domain experiment, we first con-
sider image-to-text recognition, and we show the results and
comparisons in Figure 10. By comparing with standard SVM
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Fig. 10. Average recognition rates on Wikipedia dataset (image-to-
text) across different thresholds when deriving the CCA subspace.
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Fig. 11. Average recognition rates on Wikipedia dataset (text-to-
image) across different thresholds when deriving the CCA subspace.

and ours, we see that our proposed SVM for domain transfer
clearly outperformed the standard one. We note that linear
CCA with our proposed SVM achieved higher recognition
rates than the reduced kernel CCA with our SVMs. Although
the feature dimensions for text data is 5, they are extracted
and summarized from dimensional word space. Such features
effectively contain representative information for perform-
ing recognition, which is verified by a very high text-only
recognition rate of 95.4% using only d = 5. Thus, this
is consistent with observations made in other learning tasks
with high-dimensional data and low sample density (e.g.,
cross-view action recognition in our pervious experiment),
i.e., linear models are sufficient for discriminating such data
between different classes while alleviating possible over-fitting
problems. On the other hand, Figure 11 shows the results
for text-to-image classification problems. From this figure,
it can be seen that the reduced kernel CCA with our SVM
outperformed other methods. Similar to observations made in
Multiple Feature Dataset, , the use of nonlinear models could
introduce additional capability in representing and separating
lower dimensional data. Nevertheless, from our cross-domain
classification tests using this dataset, the effectiveness and
robustness using our proposed SVM models for addressing
heterogeneous domain adaptation tasks can be successfully
confirmed.

E. Parameter Selection for Weight Functions

As discussed in Section IV-B, we need to determine the
parameter a for our proposed correlation-transfer SVM. Unlike
the standard SVM classifier which one can perform cross-
validation on training data (of the same domain) for choos-
ing the associated parameters, our proposed SVM is only
accessible to labeled data projected from the source domain,
while the test data projected from the target domain will
remain unseen. In other words, it would not be desirable
to perform cross-validation only on projected source-domain
data due to potential overfitting problems. Although we set
this parameter empirically in our experiments, we found the
recognition performance of our correlation-transfer SVM is
not sensitive to the choice of parameter a for the weighting
functions. As shown in Figures 12 and 13, we observe that
a = 5 and 10 achieved the best performance for weight
functions Ψ1 and Ψ2, respectively, while other a choices still
produced improved recognition rates when comparing to the
standard SVM classifier. This indicates that our correlation-
transfer SVM, which takes domain adaptation ability of the
derived subspace into consideration, is effective in utilizing the
representative feature dimensions and thus exhibits excellent
capabilities in recognition. We also note that, in all our
experiments, we selected the best parameters for all other
methods and reported their performance for fair comparisons.
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Fig. 12. Comparisons of recognition rates using different a for each dataset.
Note that Action, Digit, and Wiki stand for IXMAS Multi-View, UCI Multiple-
Features, and Wikipedia datasets.

VI. CONCLUSION

In this paper, we proposed a novel approach for hetero-
geneous domain adaptation and classification. By exploring
the correlation subspace derived by CCA using unlabeled
data pairs of source and target view data, we presented a
novel SVM formulation with a correlation regularizer. The
proposed correlation-transfer SVM takes the domain transfer
ability into consideration when designing the classifier at the
correlation subspace. As a result, only projected and labeled
training data from the source view are required when designing
the classifier in the resulting subspace (i.e., no training data
at the target view is needed). Experimental results on three
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Fig. 13. Comparisons of recognition rates using different a for each dataset.
Note that Action, Digit, and Wiki stand for IXMAS Multi-View, UCI Multiple-
Features, and Wikipedia datasets.

cross-domain datasets confirmed the use of our proposed
framework for improved recognition, and we verified that
our approach outperformed state-of-the-art transfer learning
algorithms which did not take such domain transfer ability
into consideration.

ACKNOWLEDGMENT

This work is supported in part by National Science Council
of Taiwan via NSC102-2221-E-001-005-MY2 and NSC102-
3111-Y-001-015.

REFERENCES

[1] S. Pan and Q. Yang, “A survey on transfer learning,” IEEE TKDE,
vol. 22, no. 10, pp. 1345–1359, 2010.

[2] J. Blitzer, D. Foster, and S. Kakade, “Domain adaptation with coupled
subspaces,” in Conference on Artificial Intelligence and Statistics, Fort
Lauterdale, 2011.

[3] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category
models to new domains,” in ECCV, 2010, pp. 213–226.

[4] R. Gopalan, R. Li, and R. Chellappa, “Domain adaptation for object
recognition: An unsupervised approach,” in ICCV, 2011, pp. 999–1006.

[5] B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel for
unsupervised domain adaptation,” in CVPR, 2012.

[6] A. Farhadi and M. Tabrizi, “Learning to recognize activities from the
wrong view point,” in ECCV, 2008.

[7] J. Liu, M. Shah, B. Kuipers, and S. Savarese, “Cross-view action
recognition via view knowledge transfer,” in CVPR, 2011.

[8] R. Li and T. Zickler, “Discriminative virtual views for cross-view action
recognition,” in CVPR, 2012.

[9] T. van Kasteren, G. Englebienne, and B. Kräse., “Transferring knowl-
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