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Optimal Local Searching for Fast and Robust
Textureless 3D Object Tracking in Highly

Cluttered Backgrounds
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Abstract—Edge-based tracking is a fast and plausible approach for textureless 3D object tracking, but its robustness is still
very challenging in highly cluttered backgrounds due to numerous local minima. To overcome this problem, we propose a novel
method for fast and robust textureless 3D object tracking in highly cluttered backgrounds. The proposed method is based on
optimal local searching of 3D-2D correspondences between a known 3D object model and 2D scene edges in an image with
heavy background clutter. In our searching scheme, searching regions are partitioned into three levels (interior, contour, and
exterior) with respect to the previous object region, and confident searching directions are determined by evaluating candidates
of correspondences on their region levels; thus, the correspondences are searched among likely candidates in only the confident
directions instead of searching through all candidates. To ensure the confident searching direction, we also adopt the region
appearance, which is efficiently modeled on a newly defined local space (called a searching bundle). Experimental results and
performance evaluations demonstrate that our method fully supports fast and robust textureless 3D object tracking even in highly
cluttered backgrounds.

Index Terms—Edge-based tracking, model-based tracking, background clutter, local searching, region knowledge

�

1 INTRODUCTION

MODEL-BASED tracking has been widely used
for 3D visual tracking and servoing tasks in

computer vision, robotics, and augmented reality. In
model-based tracking, a 3D model of a target object
is used for estimating six degrees of freedom (6DOF)
camera poses (positions and orientations) relative to
the object [1]. In general, a 3D model can be readily
obtained by range scans or multi-view reconstructions
online/offline. The camera poses are estimated using
3D-2D correspondences between the 3D model and
its corresponding 2D scene observation in the image.

Similar to feature-based tracking, 3D objects with
dense textures are advantageous for model-based
tracking because the 3D-2D correspondences are ex-
plicitly established by feature points [2], [3], [4] or
templates [5], [6], [7]. On the other hand, strong edges
of a target object are great potential cues, particularly
when texture information is not sufficient or available
for the object. In edge-based tracking, a 3D object
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model is projected on an image and matched with
its corresponding 2D scene edges in the image. Then
3D camera motions between consecutive frames are
recovered from 2D displacements of the correspon-
dences. Since the RAPID tracker was proposed [8],
edge-based tracking has been well-established [9],
[10] and has steadily been improved [11], [12], [13],
[14]. Though edge-based tracking is fast and plausi-
ble, numerous errors are commonly caused by either
background clutter or object clutter, as shown in
Fig. 1. In this paper, we explore the critical problem
of edge-based tracking when a textureless 3D object
is in a highly cluttered background. In practice, fu-
sion approaches using multiple visual cues [11], [13],
[14], [15] or additional sensors [16], [17], [18] can
be expected for robust tracking, but in many cases,
they are confronted with expensive tasks for achiev-
ing real-time performance, particularly on low-power
embedded platforms like mobile phones. Moreover,
all the necessary information is not always readily
available in common environments. Given the limited
information such that scene edges are only available
in a monocular RGB camera view, therefore, fast
and robust tracking of textureless 3D objects even in
highly cluttered backgrounds is of great importance.

To handle background clutter in edge-based track-
ing, many people have adopted robust estimators in a
registration process [9], [10], [11], [12]. Multiple edge
hypotheses can also be considered with mixture mod-
els in the estimators [11], [12]. However, false matches
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Fig. 1. Critical problem of edge-based tracking in a
highly cluttered background. Left: 3D object model
projected on a target object at a t frame with a previous
camera pose (t − 1 frame), Right: Incorrect camera
pose due to false matches (local minima).

are unavoidable in highly cluttered scenes due to
many candidates that have very similar residual er-
rors with correct correspondences. Instead of finding a
single edge hypothesis, multiple pose hypotheses can
be employed in a Bayesian manner, but their compu-
tational costs are still very high in challenging scenes,
despite some prominent improvements using a graph-
ics processing unit (GPU) [19], [20], [21]. It is also
difficult to accurately estimate camera poses when
their distributions are multi-modal. To overcome these
problems, we propose optimal local searching of 3D-
2D correspondences where their searching directions
are constrained by previous region knowledge. In our
searching scheme, candidates of correspondences are
evaluated on their region levels and region appear-
ance, and it makes it possible to search for them
among likely candidates in only confident search-
ing directions. Moreover, this searching process is
efficiently represented and handled in a searching
bundle, which is a set of 1D searching regions. Our
method is inspired by region-based approaches [22],
but the main difference is that local region knowledge
is exploited for reliably establishing 3D-2D correspon-
dences in the edge-based approach, not for region
segmentation.

Lots of methods have been proposed for dealing
with false matches between 3D-2D correspondences
in the literature. Our main challenge is to accomplish
fast and robust tracking of textureless 3D objects in
the presence of heavy background clutter using only
a single cue (edge); thus, we highlight its relevant
works.

The primary interest is how to establish 3D-2D
correspondences and handle their false matches in
edge-based tracking. In general, edge-based tracking
searches for strong gradient responses on a 1D line
along the normal of a projected 3D object model to
find correspondences at sample points. Drummond
and Cipolla [9] searched for the nearest intensity
discontinuity above a certain threshold. Marchand
et al. [23] computed the largest maximum gradient
above a certain threshold within a certain search range
using precomputed filter masks of contour orienta-

tions. Instead of precomputed filter masks, Wuest
et al. [12] used a 1D mask along a searching line
with a 2D anisotropic Gaussian mask perpendicular to
the searching line. However, these searching schemes
are very susceptible to heavy background clutter in
scenes despite the use of robust estimators. In a
pose estimation process, on the other hand, multiple
edge hypotheses have been considered rather than
attempting to find a single edge hypothesis. Vacchetti
et al. [11] greatly improved the robustness of edge-
based tracking using a multiple hypotheses robust
estimator even though they combined edges with
texture information. Similarly, Wuest et al. [12] used a
multiple hypotheses robust estimator with a Gaussian
mixture model while maintaining the visual proper-
ties of the previous edges. However, these approaches
have difficulty when the outliers are close to the
correct correspondences because they still maintain a
single edge hypothesis on the camera pose.

As high-dimensional statistics, Bayesian approaches
have been effective for avoiding undesirable errors
due to background clutter. Since camera poses are pre-
dicted from probabilistic distributions without direct
estimation using 3D-2D correspondences, in theses
approaches, the overall tracking performance is less
sensitive to individual false matches. Yoon et al. [24]
presented a prediction-verification framework based
on the extended Kalman filter, where the first pre-
dicted matches are verified by backtracking to avoid
false matches. Pupilli and Calway [20] proposed a
particle filter observation model based on minimal
edge junctions for achieving real-time 3D tracking in
dense cluttered scenes. Klein and Murray [19] demon-
strated a full 3D edge tracker based on a particle filter,
which is accelerated using a GPU. Teuliére et al. [25]
presented a particle filtering framework that uses
high potential particle sets constrained from low-level
multiple edge hypotheses. Choi and Christensen [15]
employed a first-order autoregressive state dynamics
on the SE(3) group for improving the performance
of the particle filter-based 3D tracker. In the Bayesian
approaches, however, the computational cost is usu-
ally too high for reliable tracking because larger state
spaces are needed in more complex scenes.

Region-based approaches can also be of interest in
terms of 6DOF camera pose estimation using region
knowledge. Several outstanding works based on level
set region segmentation have been demonstrated for
robust 3D object tracking [22], [26], [27], [28]. These
approaches follow a general statistical representation
of a level set function and evolve a contour of a
3D object model over the camera pose. In princi-
ple, such region segmentation is a very intensive
task because the contour is evolved in an infinite-
dimensional space, and it can also be difficult to
guarantee good segmentation results according to
scene complexity [26]. However, some approaches
have substantially been improved using direct min-
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Fig. 2. Optimal local searching based on region levels. Left: To estimate camera poses, an infinitesimal camera
motion ΔΔΔ is computed by minimizing distances between si (blue circle) and its correspondences c∗i (red cross).
Right: The c∗i are searched to only confident searching directions (bold black arrows) without searching to both
directions. Black rectangles (pixels) indicate candidates of correspondences within a certain range |η| above a
certain threshold ε. H1,2 and C1,2 are example cases in a homogeneous and cluttered background, respectively.

imization over camera poses. For instance, Schmaltz
et al. [22] directly optimized 6DOF camera pose pa-
rameters by fitting image regions partitioned into an
object and a background region of a projected 3D
object model. Prisacariu and Reid [28] formulated a
probabilistic framework that adopts the pixel-wise
posterior background/foreground membership with
GPU-assisted implementation for simultaneous seg-
mentation and 3D object tracking. While region-based
approaches would be beneficial for robust 3D object
tracking, however, most of them are still difficult to
fully support real-time performance even though it
can be possible for speed-up on GPUs. Alternatively,
Shahrokni et al. [29] showed fast 3D object track-
ing with background clutter using efficient texture
boundary detection based on a Markov model instead
of region segmentation, but this approach assumes
uniformity of texture distributions and theoretically
needs sufficient texture statistics for correct estima-
tion.

In the remainder of the paper, we first clarify our
problem with notation. We then explain optimal lo-
cal searching based on region knowledge in detail.
Finally, its feasibility is shown through experimental
results and performance evaluations in challenging
scenes.

2 PROBLEM STATEMENT AND NOTATION

Given a 3D object model M, edge-based tracking es-
timates the camera pose Et by updating the previous
camera pose Et−1 with infinitesimal camera motions
between consecutive frames ΔΔΔ, Et = Et−1ΔΔΔ. The
infinitesimal motions are computed by minimizing
the errors between the 3D object model projected with

the previous camera pose and its corresponding 2D
scene edges mi in the image such that

Δ̂ΔΔ = argmin
ΔΔΔ

N−1∑
i=0

∥∥mi − Proj(M;Et−1,ΔΔΔ,K)i
∥∥2 (1)

= argmin
ΔΔΔ

N−1∑
i=0

‖mi − si‖2 (2)

where K is the camera intrinsic parameters, si are the
sampled points of the projected object model, and N
is the number of si. With this minimization scheme,
we handle the local searching problem of the 3D-
2D correspondences between the projected 3D object
model and 2D scene edges in the image under the
following tracking conditions:
− Single, rigid, and textureless 3D object where

there is no or only little texture on the object
− Monocular RGB camera
− Scene edges are only the available visual cue.

Here, an initial camera pose, camera intrinsic param-
eters, and a 3D object model are given in advance.
Note that we consider only the visible model contour
instead of all data from the 3D object model because
the model data is usually complex and its valuable
interior data is very difficult to extract.

For region knowledge, searching regions Φ{+,◦,−}

are partitioned into three levels (interior Φ+, contour
Φ◦, and exterior Φ−) with respect to a previous object
region. The region appearance is modeled by the pho-
tometric property of the object region Ψ(Φ+) or back-
ground region Ψ(Φ−). For searching correspondences
c∗i , their candidates on each region level c

{+,◦,−}
i

are computed by local maximum gradient responses
(above a certain threshold ε) along 1D searching lines
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l
{+,◦,−}
i through si toward normal directions (within

a certain range |η|) (see Fig. 2).

3 OPTIMAL LOCAL SEARCHING BASED ON
REGION KNOWLEDGE

3.1 Region Levels
First, we describe the relationship of the 3D-2D cor-
respondences between the contour of the projected
3D object model and 2D scene edges in the image
by reasoning it in object and background regions. If
the camera motion is not fast and there are no dras-
tic changes between consecutive frames, in general,
the previous object region mostly overlaps with the
corresponding current one. In our method, therefore,
we partition the searching region into three levels,
i.e., interior, contour, and exterior regions with respect
to the previous object region, and delineate the local
searching of the 3D-2D correspondences on their re-
gion levels as:
• Correspondences c∗i always exist among candi-

dates c
{+,◦,−}
i that have intensity changes in

an interior, contour, or exterior region of a 1D
searching line l

{+,◦,−}
i if and only if the search

range covers correspondences and there are in-
tensity discontinuities between an object and
background region, ∃c∗i ∈ c

{+,◦,−}
i

(
⊂ l

{+,◦,−}
i

)
.

Since each correspondence occurs among the candi-
dates in the 1D searching lines in one direction, not
both directions, we consider likely candidates in only
confident searching directions c̃

{+,◦,−}
i to optimally

search for c∗i instead of all candidates. In practice, it
is very advantageous to alleviate false matches due
to background clutter because of greatly reducing
nuisance searching. However, the question is how to
determine the confident searching directions. In our
method, the directions are determined by evaluating
the candidates in the interior regions:
• A confident searching direction is definitely out-

ward (or on contour) if there are no candidates
of correspondences in an interior region c+i .

Therefore, the correspondences are searched among
likely candidates in the confident searching directions
as {

∃c∗i ∈ c̃
{◦,−}
i , if n(c+i ) is null

∃c∗i ∈ c̃+i , otherwise
(3)

where n(·) is the cardinality of the finite set. As-
suming that the target object is well extracted, the
local searching based on the region levels is obvious
without any uncertainty. If the target object is in the
homogeneous background as shown in H1 and H2

cases of Fig. 2, for instance, the candidates in the
confident searching directions are explicitly chosen
as c∗i . Indeed, this is a natural sense of matching
correspondences, but it is straightforward in cluttered
backgrounds. As shown in C1 and C2 cases of Fig. 2,

c∗i are chosen in the closest candidates in the confident
directions if n(c+i ) is null and otherwise, the farthest
ones. In our method, therefore, establishing 3D-2D
correspondences is deterministic regardless of back-
ground clutter if and only if the target object is nicely
extracted. Note that occlusion cases are not considered
here because it is impossible to correctly establish the
correspondences within occluded regions where the
original scene edges are removed or altered. Instead,
partial occlusions are alleviated by the M-estimator in
the registration process of our tracking framework.

On the other hand, it is very difficult to perfectly
extract an object contour in an image. In other words,
many undesired candidates can be detected inside the
object region by texts or figures on the object’s surface
(called object clutter) even though the target object has
no or little texture, and they cause wrong searching
directions. To ensure the confident searching direc-
tions, therefore, we explore efficient suppression of
the object clutter by adopting the region appearance
rather than precise extraction of the object contour
from scene edges.

3.2 Region Appearance

Before describing the region appearance, we briefly
present a searching bundle L, which is a set of 1D
searching lines li. Simply, L is built by stacking each
1D searching line and arranging (shifting and flip-
ping) it to be symmetric with the center of L. The
structure of L is as shown in Fig. 3(Middle-Left). In
the local searching, there are great benefits of using
the searching bundle. Basically, the resolution is the
length of li (and padding) multiplied by the number
of si, and it is much smaller than an input image res-
olution. In particular, unnecessary computations are
reduced when information within the 1D searching
lines has to be accessed multiple times because row
vectors directly indicate li, ci, c̃i, c∗i , distances, and
searching directions. Column vectors also include Φ+

and Ψ(Φ+) on the right side; Φ◦ and si on the center;
and Φ− and Ψ(Φ−) on the left side. Furthermore, the
region appearance can be modeled on its row and
column spaces. For example, the right side of the
columns is highly correlated with the object region
appearance. Therefore, our local searching problem
is more efficiently represented and handled in the
searching bundle.

Now let’s reconsider optimal local searching in
the searching bundle. As shown in Fig. 3(Left), the
target object has no textures and few dominant colors
(mostly, wood), but the searching bundle has little
object clutter due to texts on the object surface, inner
boundaries of the object, and color changes under
different light conditions. To efficiently suppress the
object clutter, in our method, we exploit the region
appearance, which is modeled by the photometric
property of the object region or background region.
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Fig. 3. Local searching on a searching bundle. Left: 3D object model projected on a target object with
a previous camera pose (red line: previous model contour, green lines: 1D searching lines), Middle-Left:
Searching bundle structure (71×65 local space vs. 640×480 input image resolution), Middle-Right: Candidates
of correspondences including background clutter and object clutter (black dots) and final correspondences (white
dots) by optimal local searching, Right: Similarity measure in uncertain regions of all candidates by computing
distances between distributions using the Bhattacharyya similarity coefficient (distance range: 0 to 1, the zero
value (blue) means that the candidate is on the object region).

The key idea is that the neighbor regions of the object
clutter are highly correlated with the object region
appearance.

For modeling the region appearance, we adopt
a non-parametric density function based on Hue-
Saturation-Value (HSV) histograms. Since HSV de-
couples the intensity from color, it is less sensitive
to illumination changes. Following [30], [31], a HSV
histogram has N bins which are composed of bins
of the H, S, and V histogram (N = NHNS + NV );
and it is represented as the kernel density H(Ω) =
{h(n; Ω)}n=1,··· ,N . Here, h(n; Ω) is the probability of
a bin n within a region Ω given by h(n; Ω) =
λ
∑

d∈Ω δ[b(d)− n] where δ is the delta function, λ is
the normalizing constant that ensures

∑N
n=1 h(n; Ω) =

1, d is any pixel location within a region Ω, and
b(·) ∈ {1, · · · , N} is the bin index. If we denote
Ψ(Φ+) = {h(n; Φ+)}n=1,··· ,N as the object region ap-
pearance and Ψ(U{+,◦,−}) = {h(n;U{+,◦,−})}n=1,··· ,N
as the uncertain region appearance, which is mod-
eled by the neighbor regions of the object clutter,
we then measure the similarity between Ψ(Φ+) and
Ψ(U{+,◦,−}) by computing distances of their distribu-
tions using the Bhattacharyya similarity coefficient on
a HSV space [30] such that D2[Ψ(Φ+),Ψ(U{+,◦,−})]
= 1−∑N

n=1

√
h(n; Φ+)h(n;U{+,◦,−}).

Since the right side regions of both correspondences
and object clutter in the searching bundle are object
regions, the uncertain region of the kth candidate at
the ith row of the searching bundle can be defined as
the region of from the kth candidate to the (k − 1)th
candidate, cik−1 < Uik < cik and then the similarity
measure is computed by

D2
ik[Φ

+, φk] = D2
ik

[
Ψ(Φ+),Ψ(U

{+,◦,−}
ik (φ))

]
(4)

where Ψ(U
{+,◦,−}
ik (φ)) =

∑
cik−1<φ<cik

Ψ(φ). In some
candidates, on the other hand, only the object re-
gion appearance is insufficient to model the uncer-
tain region appearance. To handle such candidates,

we incorporate the background region appearance
because if the candidates are object clutter, the un-
certain region appearance can be relatively far from
the background region appearance even though it
is not very close to the object region appearance. If
we denote D2

ik

[
Ψ(Φ−),Ψ(U

{+,◦,−}
ik (φ))

]
as the simi-

larity measure with the background region appear-
ance, therefore, we evaluate the candidates through
multiple phases as

Γ(θ)D2
ik[Φ

+, φk] + (1− Γ(θ))D2
ik[Φ

−, φk] (5)

where Γ(θ) is the phase function defined as Γ(θ) = 1
if D2

ik[Φ
+, φk] < τ and otherwise, Γ(θ) = 0; and

D2
ik[Φ

−, φk] =
(
1−D2

ik

[
Ψ(Φ−),Ψ(U

{+,◦,−}
ik (φ))

])
. In

addition, the neighbor regions of the object clutter
cannot be correlated with the object region appearance
when they are occupied by small portions of the
object clutter such as texts or figures. Assumed that
most object clutter belongs to the interior region Φ+,
we can employ the interior region appearance prior
to modeling the uncertain region appearance of c+i ,
such as D2

ik

[
Ψ(Φ+),Ψ(U+

ik(ω))
]
, where Ψ(U+

ik(ω)) =∑
si<ω<c+ik

Ψ(ω). Figure 3(Right) shows an example
of our similarity measure in uncertain regions of all
candidates (black dots in Fig. 3(Middle-Right)) in the
searching bundle. Lower values (blue) indicate that
they are much closer to the object region appearance.
With this measure, finally, the correspondences c∗i
(white dots in Fig. 3(Middle-Right)) are searched by
(3).

4 EXPERIMENTAL RESULTS

This section first describes our underlying tracking
framework along with implementation details and
then shows its experimental results and performance
evaluations.
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4.1 Implementation
In our implementation, a tracking framework is based
on minimizing distances between a contour of a pro-
jected 3D object model with a previous camera pose
and its corresponding 2D scene edges in an image
in an iterative manner. The infinitesimal motions are
represented by a 3D rigid-body transformation group
in �3 [32], [33]. For robust estimation, an iterative
reweighted least square (IRLS) approach is performed
using a bisquare M-estimator. In this framework, the
iteration is terminated when the reprojection error is
small (< 1.5 pixel) or the number of iterations is larger
than a defined one (> 10).

For the model contour, the visible boundary lines
of the object model are filtered through a visibility
and boundary test. In both tests, the hidden lines are
sorted by computing the inner products among the
camera viewpoint vector and the face normal vectors.
The lines shared by the two faces are excluded among
the visible lines. Here, the object model consists of
wireframes with vertices and lines. The sampling in-
terval of the model contour was properly determined
according to target objects.

For the candidates of correspondences, the 1D
searching lines l

{+,◦,−}
i are defined using the Bresen-

ham’s line drawing algorithm (8-connectivity) [34].
The candidates of correspondences c

{+,◦,−}
i are com-

puted by 1D convolution of a 1 × 3 filter mask
([−1 0 1]) and 1D non-maximum suppression (3-
neighbor) along the lines. To improve its robustness,
we separately compute the gradient responses on each
color channel of an input image and then take the one
with the largest norm [35] such that

c
{+,◦,−}
ij = max

C∈{R,G,B}

∥∥∥∇IC
(
l
{+,◦,−}
ij

)∥∥∥ (6)

where R,G,B are the RGB color channels and IC(.)
is the pixel intensity in the C channel image. The
threshold for ci was 10 (ε = 10), and the search range
for li was 30 pixels (|η| = 30).

For the object region appearance, each bin number
was set as NH = NS = NV = 8, and only the pixels
with saturation and value larger than certain thresh-
olds (> 0.1 and 0.2, respectively) were used for the
HS histogram. The object region appearance Ψ(Φ+)
and the background region appearance Ψ(Φ−) were
updated when the tracking succeeded. The parameter
for the phase function τ was 0.3. Overall procedures
of our tracking framework are shown in Procedure 1.

4.2 Performance
For target objects, textureless 3D objects were cho-
sen as shown in Fig. 4, Fig. 5, and Fig. 6. In our
experiments, we mainly used rectangle-shaped ob-
jects for modeling simplicity, but complex-shaped ob-
jects whose contours are not formed of only several

Procedure 1 Tracking framework
Given: 3D object model M, previous camera pose
Et−1, camera intrinsic parameters K

1: repeat
2: Set Pt−1 ← K Et−1.
3: Set M̃ via a visibility and boundary test.
4: Set si=0,...,N−1 by sampling Pt−1M̃ with equal

distances.
5: Set Φ{+,◦,−} and LN×W with

l
{+,◦,−}
i=0,...,N−1;j=0,...,W−1.

6: For i := 0, . . . , N − 1, compute c
{+,◦,−}
i by (6).

7: For i := 0, . . . , N − 1, evaluate c
{+,◦,−}
i via (5).

8: For i := 0, . . . , N − 1, search for c∗i by (3).
9: Compute Δ with correspondences

(si, c
∗
i )i=0,...,N−1 by (2).

10: Update Et−1 ← Et−1Δ.
11: until reprojection error < min or iteration > max

Return: Et ← Et−1

straight lines can also be considered if their 3D models
are available, as shown in Fig. 5. The target ob-
jects were modeled as wireframe models offline. The
backgrounds were arbitrarily prepared either with
or without heavy clutter as shown in Fig. 4, Fig. 5,
and Fig. 6. The experiments were performed on a
standard laptop with 2.27 GHz of a CPU and 4 GB
of a RAM. For capturing images, we used a standard
web camera with 640×480 image resolution. An initial
camera pose and camera calibration parameters were
given in advance.

First, we tested our method with various camera
motions and verified it by projecting a 3D object
model on a target object with estimated camera poses.
We also examined each 3D-2D correspondence es-
tablished in searching bundles. In searching bundles,
we can say that the 3D object model projected with
estimated camera poses is perfectly matched on the
target object if all the correspondences are laid on
the center of the searching bundles. As shown in
Fig. 4, our method was successfully performed with
different textureless 3D objects in different highly
cluttered backgrounds. In most cases, the searched
correspondences were acceptable without interference
from the background clutter. Our method also prop-
erly handled the object clutter from texts or figures
on the object surface (this can easily be recognized by
the non-uniform appearance in the interior regions
of the searching bundles). On the other hand, we
could see a few false matches when the object’s color
density was quite similar to the background’s one
(see Second Row-Three Column and Fourth Row-
Fourth Column in Fig. 4) or the object was partially
occluded (see Sixth Row-Third and Fourth Column in
Fig. 4). However, these errors did not significantly af-
fect the overall tracking results because they could be
alleviated by the M-estimator during the registration
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Fig. 4. Experimental results with different textureless 3D objects in different highly cluttered backgrounds. Odd
Rows-First Columns: Target objects and backgrounds, Even Rows-First Columns: Scene edges, Odd Rows-
Second to Fourth Columns: 3D object models (green rectangles) projected on target objects with estimated
camera poses, Even Rows-Second to Fourth Columns: 3D-2D correspondences (white and green dots)
established in searching bundles.
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Fig. 5. Tracking results using textureless 3D objects with different shapes (Top and Middle-Row: Pink cat,
Bottom-Row: White tray) in highly cluttered and homogeneous backgrounds. Red meshes indicate 3D object
models projected on target objects with estimated camera poses.

Fig. 6. Tracking results using a textureless 3D object with multiple colors in highly cluttered and homogeneous
backgrounds. Top-Row: 3D object models (white mesh) projected on target objects with estimated camera
poses, Bottom-Row: 3D-2D correspondences (white dots) established in searching bundles.

process.

More experimental results are shown in Fig. 5,
Fig. 6, and Fig. 7. As stated above, our method
allowed textureless 3D objects with complex shapes
as well as simple rectangular shapes if their 3D
models were available as shown in Fig. 5. In these
experiments, we used two textureless 3D objects with
different shapes (pink cat and white tray) and their
models (5000 faces and 320 faces, respectively), which
are visualized as red meshes in Fig. 5. In the tray case,
however, there was some ambiguity about the rotation
on one axis because its shape was symmetric about the
axis. Since our method uses the region appearance,

which is modeled by the color density, it could be
restricted to the object’s colors. Unless the majority of
the object’s color density was quite similar to the back-
ground’s one, however, the tracking performance was
not considerably degraded regardless of whether the
object had a single dominant color (Fig. 4 and Fig. 5)
or multiple colors (Fig. 6). When new surfaces (faces)
of the 3D object appeared as shown in Fig. 7(Top-
Row), additionally, the tracking could be suscepti-
ble to false matches because the visible and hidden
boundary lines got closer. Since the previous visible
boundary lines (black dashed line) were laid on the
object region after switching, however, our method
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Fig. 7. Tracking result when a new surface (face) ap-
pears. Top-Row: The hidden boundary line is switched
into the visible boundary line (black dashed line: pre-
vious visible boundary line, red solid line: current visi-
ble boundary line). Bottom-Row: The previous visible
boundary line was handled as the object clutter in
a searching bundle (white dots: searched correspon-
dences).

well suppressed them as the object clutter as shown
in Fig. 7(Bottom-Row). Our real-time demonstrations
are shown in a supplementary video.

Next, we examined 3D-2D correspondences estab-
lished in a searching bundle at each iteration and
compared them with other approaches. Since our
method handles a local searching problem of 3D-
2D correspondences, we basically chose the iterative
closest points (ICP)-like approach that searches for the
closest intensity discontinuity above a certain thresh-
old [9]. In the searching bundle, the local searching
problem can also be considered as a local segmenta-
tion problem; thus, we compared our method with
one of segmentation approaches (GrabCut [36]). As
shown in Fig. 9, in the ICP-like approach, the majority
of the correspondences were false matches due to
background clutter and even object clutter, and the
tracking was stuck in the local minima during the
early iterations (we can also see the searching bundles
were not changed). In the segmentation approach, the
segmented boundaries were acceptable, but delicate
user interactions were separately in need of the cor-
rect segmentation during the early iterations because
automatic processing failed in the searching bundles.
In our method, however, most correspondences were
correctly matched and gradually merged to the center
of the searching bundle on every iteration.

To evaluate the accuracy, we estimated 6DOF cam-
era poses with ones by the well-known SIFT [37]
because the SIFT could reliably estimate camera poses

w.c.s

254 mm

38
1 

m
m Target 

object

Reference plane

Target scene

Fig. 8. Setup for the comparison of 6DOF camera
poses. Left: Reference plane, Right: Target scene and
3D object.

as batch processing using dense feature points in the
background of our setup as shown in Fig. 8. Note
that the coordinates of the reference plane and the
3D object were registered in advance. As shown in
Fig. 10, both trajectories were similar during all frames
(765 frames). The average angle difference was about
1.35◦, and the average distance difference was about
1.29 mm.

Since one of main concerns is real-time perfor-
mance, we computed the overall processing time
during 800 frames and the number of iterations at
each frame with unconstrained camera motions. For
the first textureless 3D object in Fig. 4, one iteration
was performed within 6.3 ms (establishing corre-
spondences: 4.2 ms, computing and updating camera
motions: 0.5 ms). The overall processing time per
frame linearly increased up to the defined maximum
number of iterations. In the tracking framework, the
maximum number of iterations was 10 for tolerating
certain motions. During the test, finally, the average
overall processing time was about 30 ms and the
average number of iterations was less than 5. In the
evaluation, the visibility and boundary test were done
within a few milliseconds because the 3D object model
was very simple. If the object models are complex,
however, this process would not be trivial in the
overall processing time. In the tracking framework,
alternatively, the visible boundary lines were tested
only once every frame because they were not much
changed during iterations. Since only the model con-
tour was used for tracking, moreover, it could main-
tain reasonable speed for real-time performance (20
fps with the cat object as shown in Fig. 5(Top and
Middle-Row)). In addition, the search range could be
properly set because the correspondences were not far
from previous ones even in certain motions.

Finally, we compared the overall tracking perfor-
mance with one of the region-based methods [28] that
demonstrated the state-of-the-art results of fast and
robust 3D object tracking. For evaluation, we used the
same data (target image with the textureless 3D object
and its model (Fig. 11(Top Row-First Column))) and
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Fig. 9. Comparison of 3D object models projected on target scenes with estimated camera poses (Odd-Rows:
red line) and 3D-2D correspondences (Even-Rows: white dots) established at the 1st, 3rd, 5th, 7th, and 9th
iteration when using Top-Rows: ICP-like approach, Middle-Rows: segmentation approach (GrabCut [36]), and
Bottom-Rows: our method.
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Fig. 10. Comparison of 6DOF camera poses estimated using the SIFT [37] (red line) and our method (blue line).

Initial camera pose

Fig. 11. Comparisons between Top: the region-based method [28] and Bottom: our method. Red and green
meshes are 3D object models projected on target scenes with estimated camera poses. Top Row-First Column:
The white contour is the model contour projected with the initial camera pose.

the same parameters (initial camera pose and camera
calibration parameters) given by the available code
in [28]. We also prepared additional target images by
displacing the background of the original target image
into different highly cluttered backgrounds as shown
in Fig. 11. Since [28] uses the CUDA framework for
GPU processing, we evaluated both methods on a
laptop with an NVIDIA Geforce GTX 560M video
card. As shown in Fig. 11, both methods correctly esti-
mated camera poses for all target images regardless of
the background clutter. In certain cases, our method
was slightly faster, but we considered both runtimes
to be comparable in most cases. However, it would
be convinced that our method is more advantageous
for real-time applications (even on mobile platforms)
because it can sufficiently support fast tracking even
without GPU processing.

4.3 Limitations

In our method, we assume that there always exist
correspondences that have local maximum gradient
responses above a certain threshold within a certain
range. If camera motions are much faster or change
drastically, however, the correspondences can be out
of the search range or overlapped regions can be much
smaller due to large displacement (Fig. 12(Left)). It can
also be difficult to detect the correspondences under
heavy occlusion (Fig. 12(Middle-Left)).

As demonstrated in the experiments, our method
does not depend on specific shapes of textureless 3D
objects. Since we use only the model contour to esti-
mate 6DOF camera poses, however, the camera poses
have some ambiguity when the objects have symmet-
ric shapes. Though textureless 3D objects usually have
few dominant colors, our method is not limited to
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Fig. 12. Tracking failure cases. Left: Fast motion, Middle-Left: Heavy occlusion, Middle-Right: Similar object
and background color, Right: Low contrast by poor illumination.

specific colors of objects. However, it can be difficult
not only to detect the 3D-2D correspondences, but also
to model the distinctive region appearance between
the object and background region when the object’s
color density is quite similar to the background’s
one (Fig. 12(Middle-Right)) or the light conditions are
poor (Fig. 12(Right)).

5 CONCLUSION

This paper presented optimal local searching for fast
and robust textureless 3D object tracking in highly
cluttered backgrounds. In the local searching of the
3D-2D correspondences, confident searching direc-
tions were determined by evaluating their candidates
with region knowledge, and it led to sufficiently
alleviate numerous false matches due to the back-
ground clutter. As the searching bundle was newly
defined, moreover, the local searching was efficiently
performed on the low-dimensional space. Through
experiments and evaluations, finally, we showed that
our method allowed robust textureless 3D object
tracking even in highly cluttered backgrounds while
retaining real-time performance.

Though we made substantial improvements in the
edge-based approach, combining with other available
cues would be necessary to handle more general cases
including our limitations [38]. As another interest
in our future works, tracking-by-detection schemes
would be beneficial for improving tracking perfor-
mance because the detection process could allow us
good guesses for tracking by providing better prior
knowledge such as approximated object regions or
camera poses [17].
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