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Abstract

We propose a novel numerical approach for solving the
free-form deformable registration problem. The central
idea is to utilize the well understood techniques from varia-
tional deformable registration problems. We demonstrate
that it is possible to formulate the free-form deformable
registration problem as the optimization of an energy func-
tional as in the dense deformation case. This energy func-
tional possesses image distance and regularization terms,
which are both functions of the free-form deformation con-
trol points. We then setup a semi-backward (implicit) par-
tial differential equation that optimizes the established en-
ergy functional. In addition to being mathematically justi-
fied, this approach provides both accuracy and speed. Our
evaluation on synthetic, real, two dimensional, and three di-
mensional data demonstrates accuracy and computational
effectiveness.

1. Introduction and Background
Establishing dense correspondence or mapping between

two images is a fundamental problem in both computer
vision and medical imaging analysis. Numerous methods
have been proposed that are primarily based on pioneering
works in [2, 6]. Motion analysis through estimating the op-
tical flow has been the primary application for such tech-
niques in the computer vision realm, whereas image reg-
istration has been the driving application from the medical
image analysis side. The underlying approach has always

been similar: minimization of a two-term energy functional
balancing off an image distance metric with some constraint
on the underlying correspondence map. Calculus of varia-
tions enables the derivation of an iterative solution scheme
for the problem of minimizing the energy functional. The
condition of minimal energy is reached in a state when two
conceptual forces acting against each other are in an equi-
librium. One of these forces pulls points in one of the im-
ages towards a position that decreases the distance between
the two images. The second force, determined by the regu-
larizer, can be thought of as a constraint on the pixel move-
ments which counteracts the effects of the former force. Im-
age distance metrics have evolved from linear optic flow
constraints to non-linear sum of squared differences on im-
age intensities or gradients, and finally to information theo-
retic distances/similarities over the years [6, 1, 11]. For mo-
tion analysis applications, smoothness constraints are added
primarily to resolve the ill-posedness of the problem. This
is despite the fact that discontinuities in the motion field,
due to occlusions must be allowed [8, 9]. On the other hand
in medical image registration techniques, deformation fields
should be free of discontinuities such as folding or tearing.
These so-called diffeomorphic properties can be enforced
by incorporating regularization terms inspired from the ma-
terial properties of the deformable objects [2, 3]. Almost all
such approaches boil down to solving a non-linear partial
differential equation in an iterative setting [1, 3].

The computational complexity is mainly due to the un-
derlying large dimension of the sought-after deformation or
flow. In [5], authors have proposed a more computationally
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Figure 1. Evaluation of registration quality for deformable registration based on free-form deformations. Starting from a fixed control
point grid (A), a known control point configuration (B) is used to generate a ground-truth displacement field. Its x and y components are
shown in (C) and (D). A synthetic checker board image is deformed and treated as an artificial reference for registration. The template is
given by the undeformed image. (E) and (F) are the difference images before and after registration, (G) and (H) are the components of
the reconstructed displacement field after registration. A comparison with the ground truth displacement field helps to asses registration
quality. Detailed results are given in section 3.1.

efficient method based on the multi-grid approach. On the
other hand, parameterization of the deformation field has
the potential to reduce the computational complexity and
increase the practicality of the technique. Free Form De-
formation (FFD) based approaches are popular mainly due
to the decreased number of the unknown parameters, and
to the inherent smoothness caused by the interpolating ker-
nel (e.g., B-spline functions) [11, 12]. The general idea of
free-form deformations is to warp an image by manipulat-
ing a regular grid of control points distributed across the
image at an arbitrary mesh resolution. Smoothness is intro-
duced since the displacement of individual pixels between
the control points is interpolated from the displacement of
the surrounding control points. The behavior of this inter-
polation step is determined by the degree of the B-splines.
Displacement fields based on cubic B-splines are continu-
ous up to the second derivative yielding smoothness, which
only depends on the chosen control point grid resolution.
Linear B-splines, which are in fact simply a linear inter-
polation between control points, can also be employed al-
though their use is rarely documented in the literature. In
both [11, 12], the solution is formulated as the result of the
gradient descent or Levenberg-Marquardt optimization with
a forward Euler update formula, where the spatial depen-

dency of control points is ignored. Furthermore, in both
approaches computations are still performed on a per-pixel
basis. In this paper, we make a complete analogy between
the variational solution strategy for dense deformation fields
and the FFD setting with control point grids. All concepts
from the variational solution strategy, such as the two an-
tagonistic forces are transferred from the level of individ-
ual image pixels to the control points. Since the number
of control points is typically significantly smaller than the
number of image pixels, there is a potential performance
advantage. In particular, we show that regularization per-
formed on the control points is completely equivalent to the
traditional way of applying a regularizer to the dense de-
formation field. We provide a numerically efficient solution
for the diffusion FFD registration problem.

2. General Problem Formulation

Given the fixed and moving images If and Im, both de-
fined over a domain Ω ⊂ R

n (n is the image dimension),
the energy functional of the minimization problem for re-
covering the dense correspondence map u : R

n �→ R
n can

be formulated as E(u) = M(u) + λR(u) The first term
denotes the image metric and the second term is the reg-



ularization. In the case, where we use the sum of squared
differences (SSD) and the diffusion regularization as the im-
age metric and regularization, the energy can be computed
as:

∫
Ω

(If (x) − Im(x + u))2dx + λ

∫
Ω

trace(∇u�∇u)dx

(1)
where � denotes transpose operation. The Euler Lagrange
equation for dimension d ∈ {x, y, z} associated with en-
ergy at 1 is then given by:

(Im(x + u) − If (x))∇dIm(x + u) + λΔud = 0 (2)

The nonlinear parabolic partial differential equation (PDE)
in 2 can be solved using a simple forward Euler update for-
mula:

ut+1
d = ut

d + δt(fd(ut) + λΔut
d) (3)

where δt is the time step, t is the time index, and fd(u)
denotes with the first term in equation 2. To ensure stability
the δt should be chosen small, which in turn may have an
adverse effect on the convergence speed. In the discrete
case where images are of sizeM ×N , we can represent the
Laplacian operator Δ as a square circulant matrix operator
Rwith sizeMN×MN . Therefore, a semi-backward Euler
update formula can be written as follows:

ūt+1
d = (I + λδtR)−1(ūt

d + δtf̄d(ut)); (4)

where I is the identity matrix with same size as R. ūd and
f̄d(u) are discrete version of ud and fd(u) re-arranged into
a vector. The update equation 4 presents the advantages of
greater stability and faster convergence [4]. The downside
is that it involves inverting a large matrix. Depending on
the matrix form, accelerated inversion approaches such as
the Fourier or multi-grid method may be used [5]. It should
also be noted that, in order to cope with large displacements,
equation 4 is solved in a scale-space setting. Here the equa-
tion must be solved over a number of resolutions starting
with zero displacements as the initial value at the lowest
resolution. Using this approach, the initial values at each
resolution are computed based on the prior resolution esti-
mates. This is an attempt to ensure covergence to a better
local optima over a larger range of parameters of the energy
functional .

2.1. Free-form Deformations
In the case of free form deformations, the underlying de-

formation field is parameterized based on a set of control
points placed at the nodes of a discrete grid over the im-
age domain. Without loss of generality, we consider the

three dimensional case, where a set of N = nxnynz con-
trol points φ = [ϕx, ϕy, ϕz]� with a spacing of sx, sy, sz

is introduced. The deformation field u(φ, x) uses a set of
B-spline basis functions to interpolate displacements on in-
dividual points based on that of the control points. Let
px, py, pz be the indices of the control point cell that con-
tains a particular image point x = (x, y, z)�, e.g. px =
�x/sx	. The cubic B-spline transformation is then:

u(φ,x) =
3∑

a=0

3∑
b=0

3∑
c=0

Ba
3 (α)Bb

3(β)Bc
3(γ) φ(i, j, k), (5)

where (i, j, k) = (px + a − 1, py + b − 1, pz + c − 1)
are the control point indices. The parameters α, β, γ are
the fractional remainders of a pixel between its surround-
ing control points, for instance α = x/sx − px. The ba-
sis functions Bk

3 (α) are the cubic B-splines [11]. If lin-
ear B-splines Bk

1 (α) are used instead, the transformation
simplifies to a linear interpolation between the eight con-
trol points surrounding an image point. Two types of spatial
neighborhoods can be considered in free-form deformations
for discretized images. The neighborhood Φ of a particu-
lar image point x contains all control points used for the
computation of the deformation at that point. This neigh-
borhood comprises a block of 2 × 2 × 2 control points for
linear B-splines and 4 × 4 × 4 control points for cubic B-
splines. The neighborhood Ψ consists of all image points
affected by a particular control point φi. For instance with
linear B-splines, the control point neighborhood contains
2sx × 2sy × 2sz image points, whereas for cubic B-splines
it contains 4sx × 4sy × 4sz image points.

2.2. Free-form Registration

As described in section 2, the registration objective is
posed as the problem of finding the optimal deformation
that maps the moving (template) to the fixed (reference) im-
age. Since in the context of free-form deformations the de-
formation is parameterized by the control points, this aim
can be equivalently formulated as that of finding the opti-
mal control point configuration.

2.2.1 Computation of External Image Force

Once we substitute the u in equation 1 with the one from
equation 5, the dissimilarity term M(φ) can be computed
as follows:

M(φ) =
∫

Ω

(If (x) − Im(x + u(φ,x)))2 dx. (6)

The force field is computed as the partial derivative of the
dissimilarity term with respect to the d component of the



control point (i, j, k)

fφ
d (φ(i, j, k)) =

∂M(φ)
∂ϕd(i, j, k)

=
∫

Ψ

fd(x) · ∂

∂ϕd(i, j, k)
ud(φ,x)dx. (7)

where fd(x) is:

(Im(x + u(φ,x)) − If (x)) · ∂

∂d
Im(x + u(φ,x)). (8)

In equation (7), the partial derivative of the transformation
function with respect to the d component of the control
point φi, is non-zero for image points within the neighbor-
hood of Ψ as defined in the previous section. Furthermore,
its value is independent of the control point position. This
allows the force term to be written as a convolution of the
force at the image level with a kernel H(x). The kernel
turns out to be a smoothing one with a compact support,
built upon the basis functions. In the case of cubic B-splines
the kernel has the following form:

H(x) =
{

Ba
3 (α)Bb

3(β)Bc
3(γ) 0 ≤ xd ≤ 4sd

0 elsewhere (9)

where a = |i + 1 − �x/sx	|, b = |j + 1 − �y/sy	|, c =
|k + 1 − �z/sz	| and and α, β, γ are defined in the previous
sections. Therefore, the external image force acting on the
control point (i, j, k) can be simply computed by means of
a convolution and a downsampling step as follows:

fφ
d (φ(i, j, k)) = (fd ∗ H)(x) |x=φ(i,j,k) (10)

where ∗ denotes the convolution operation.

2.2.2 Computation of Regularization Force

Similar to the image dissimilarity term, the regularization
termR(φ) may be computed by substituting the u in equa-
tion 1 with the one from equation 5:

R(ϕ) =
∫

Ω

∑
d

(
| ∂

∂x
ud(x, φ)|2 + | ∂

∂y
ud(x, φ)|2

+| ∂

∂z
ud(x, φ)|2

)
dx. (11)

Assuming a set of cubic B-spline basis functions, using the
Cauchy-Schwarz integral inequality, we can derive the up-
per bound of the regularization. For instance, the first term
corresponding to the x dimension (i.e., d = x) from equa-
tion 11 can be written as follows:

∑
i,j,k

∫
U

∣∣∣∣∣∣
∑
a,b,c

dBa
3 (x)
dx

Bb
3(y)Bc

3(z)ϕx(i∗, j∗, k∗)

∣∣∣∣∣∣
2

dx

≤ β
∑
i,j,k

∣∣∣∣∣∣
∑
a,b,c

ϕx(i∗, j∗, k∗)
∫

U

dBa
3 (x)
dx

Bb
3(y)Bc

3(z)dx

∣∣∣∣∣∣
2

= γ
∑
i,j,k

|Dx ◦ ϕx(i, j, k)|2 (12)

whereU denotes a unit cube and i∗ = i+a−1 (similarly for
j∗ and k∗). Furthermore, β and γ are real positive numbers.
In the case of cubic B-splines, the operator Dx resembles a
discrete gradient operator in the x directio. The elements of
the operator are as follows:

Dx(i, j, k) = (Bi
3(1) − Bi

3(0))
∫ 1

0
Bj

3(y)dy
∫ 1

0
Bk

3 (z)dz

for 0 ≤ i, j, k ≤ 3
(13)

By performing the same operations as in equation 12 for
d = y, z and then compounding them together, we arrive at
the upper bound for the regularization:

R(ϕ) =
∑
i,j,k

∑
d

||∇Dϕd(i, j, k))||2. (14)

where ∇D = (Dx,Dy,Dz). Equation 14 demonstrates a
direct link between the regularization on the dense defor-
mation field and the control point movements.

2.2.3 Numerical Solution

The Euler-Lagrange equation associated with the energy
functional of E(φ) = M(φ) + λR(φ) can be formulated
as follows:

fφ
d (φ) + λΔDϕd = 0 (15)

where d is the vector component and ΔD = ∇D · ∇D�
denotes a discrete laplacian like operator built based on the
interpolating kernel.
Similar to the equation 3, we can re-arrange fφ

d and ϕx

into aN×1 vector as f̄φ
d and ϕ̄x, respectively. Furthermore,

the ΔD can be represented by a square circulant matrix of
N × N dimension, called D. Therefore, a semi-backward
Euler update formula can be written as follows:

ϕ̄t+1
d = (I + λδtD)−1(ϕ̄t

d + δtf̄φ
d (φ)); (16)

where I is the identity matrix same size as D. The up-
date equation 16 has the advantage of having the smaller
dimension comparing to the one in equation 4. Similar to



the dense case, a multi resolution scheme must be used in
order to converge to a better solution.

3. Evaluation

A number of experiments have been conducted in order
to evaluate the proposed registration algorithm. Measure-
ments on synthetic data sets are used to demonstrate the ef-
fectiveness and performance of the algorithm. Medical data
sets combined with ground-truth data illustrate the applica-
bility of the registration method to typical problems in the
clinical setting.

3.1. Synthetic Data

The experiments on synthetic data are performed in the
two-dimensional case. A synthetic image is deformed us-
ing a known control point configuration. The resulting de-
formed image is treated as the reference for a series of mea-
surements while the template image is given by the original,
undeformed image. Registration accuracy can now be as-
sessed by comparing the displacement field obtained by the
registration algorithm with the ground truth displacement
computed from the known control point configuration. The
synthetic image that is used for the experiments, shown in
Figure 1, is a checker board of size 300 × 300 pixels with
random intensities. A control point configuration that is si-
nusoidal in the x and y directions and that is based on a
fixed spacing is used to generate the ground truth displace-
ment field and the artificial reference image. Registration
is performed for various initial control point spacings rang-
ing from 5 to 50 pixels at increments of 5. All measure-
ments are repeated for linear and cubic B-splines using oth-
erwise identical parameters, allowing to make several ob-
servations.

3.1.1 Similarity after Registration

Registration based on both linear and cubic B-splines can
yield comparably low SSD dissimilarity values after reg-
istration for moderate control point spacings. As can be
seen in the left graph of Figure 2, control point spacings be-
tween 5 and 20 pixels give similar results for both types of
B-splines. For larger control point spacings, cubic B-splines
show better tolerance and only start to produce significantly
worse registration results at spacings around 35 pixels. This
aspect can be explained by the smoothness properties of
displacement fields generated using cubic B-splines. How-
ever, for practical applications linear B-splines are attractive
nonetheless, since typically relatively small control point
spacings are used in order to capture small image details.

3.1.2 Processing Time

The main advantage of linear B-splines is their lower com-
putational complexity that can significantly increase regis-
tration speed. Using the efficient B-spline coefficient pre-
computation technique proposed in [10], the difference in
registration time between linear and cubic B-splines is re-
duced to an additive constant independent of the control
point spacing. The right hand side of Figure 2 shows that
in the 2D case this constant is around 3 seconds. Total
registration durations for linear B-splines and the data de-
scribed above are between 4 and 7 seconds. Shorter times
are achieved on coarser control point grids. It can also be
deduced from the figure that control point spacings below
15 pixels yield a disproportionate increase in registration
time. In 3D, a typical registration run using linear B-splines
and images of size 256 × 256 × 142 voxels takes 70 to 150
seconds, depending on various parameter settings. Reg-
istration with identical settings and cubic B-splines takes
roughly 140 seconds longer. All given durations refer to ex-
periments performed on a 2.4 GHz Intel Core 2 Duo system
equipped with 2 GB of memory.

3.1.3 Deformation Field Reconstruction

Several measures have been proposed in the literature to
compare displacement fields. Two such measures that orig-
inate from the context of optical flow reconstruction [7] are
the angular error and the magnitude of vector difference.
Both being simple and intuitive, these two measures allow
to quantify how well the ground truth displacement field is
reconstructed using the registration algorithm. While the
angular error measures the directional difference for corre-
sponding vectors in the correct and the reconstructed dis-
placement field, the second measure quantifies the differ-
ence in vector length. Evaluated for all positions in the
dense deformation fields obtained for the aforementioned
registration series, several statistics can be collected, as il-
lustrated in Figure 3. Best results in the sense of both mea-
sures are achieved using cubic B-splines and a control point
spacing between 15 and 35 pixels. The magnitude of vector
difference is for these parameters less than one pixel on av-
erage and the mean angular error is around 4 degrees. Given
the fact that the synthetic images used for experiments con-
tain regions of constant intensities, offering less ”grip” for
the registration algorithm, these values are competitive.

3.2. Medical Data
In order to evaluate the performance of the registration

algorithm in the 3D case and its applicability to real patient
data, a set of validation measurements is performed as fol-
lows. A data set of 11 computer tomography (CT) thorax
scans of one patient is used where each scan is acquired at
a different breathing stage. Pairs of volumes from the data
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Figure 2. Evaluation of registration performance for the 2D ground-truth experiment series. SSD dissimilarity after registration (left) and
computation time (right) for linear and cubic B-splines and for different control point grid resolutions are shown. Images are of size
300 × 300 pixels. The same, sufficient number of iterations (200) is performed in all measurements for comparability. Linear B-splines
offer better computational efficiency and yield final dissimilarity values that are comparable to those achieved using cubic B-splines for
moderate control point spacings up to 20 pixels.
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Figure 3. Assessment of 2D registration precision based on a comparison of reconstructed dense displacement fields with ground truth
displacements. The magnitude of vector difference (left) and angular error (right) metrics are evaluated for all corresponding positions in
the displacement fields. Cubic B-splines can generally account for marginally better results than linear B-splines. Best values are achieved
for control point spacings between 15 and 35 pixels with average difference vector magnitudes of less than one pixel and average angular
errors around 4 degrees. The data points in the graphs represent the respective mean values and the standard deviations for all experiments
are indicated as vertical bars.

set are registered, resulting in a total of 55 registrations. A
qualitative evaluation can be given based on the difference
images before and after registration, a few sample slices of
which are shown in Figure 4. Since a more quantitative as-
sessment of registration success is desirable, ground truth
data is generated. A tumor on the left side of the patient’s
chest is manually segmented in all CT scans, resulting in 11
binary segmentations. The dense deformation fields from

the registrations that link the images from different breath-
ing stages are then applied to the appropriate segmentation
masks. For instance, the deformation field that maps image
1 to image 6 is applied to the segmentation corresponding to
image 1. The resulting deformed segmentation is compared
to the ground truth, the manual segmentation for image 6.
In an ideal case these two segmentations overlap perfectly.
To measure the degree of overlap that is achieved, sensi-



tivity and specificity are evaluated on a per-voxel basis and
statistics over all 55 correspondences in the registration se-
ries are collected. Sensitivity is in this context defined for a
pair of segmentation masks and gives the fraction of voxels
in the ground-truth tumor region that are correctly matched
in the reconstructed segmentation. A perfect overlap results
in a sensitivity value of 1. Specificity gives the fraction
of correctly identified non-tumor voxels. Since on average
the tumor regions cover only 0.04% of the whole volume,
specificity is practically 1 in all experiments. The sensitiv-
ity mean is at 0.879 with a standard deviation of 0.045 and
a median at 0.894. Minimal and maximal sensitivity values
among the data set are 0.769 and 0.937, respectively.

4. Summary and Conclusion
In this paper, we described a numerically efficient tech-

nique for the free-form deformable registration problem.
We demonstrated the link between the formulations of the
deformable registration technique in the variational and the
free-form settings. We specifically showed that both the im-
age dissimilarity and regularization in dense case translate
directly to the free-form case. That led to the translation
of the approaches already investigated for the variational
dense deformation case. The proposed approach has the
advantage of being numerically efficient for two reasons.
The first is that the core iterative scheme is based on semi-
backward Euler, and second the update formulation is done
at the control point level, with a fraction of the number com-
pared to that of image points. The approach is tested on set
of synthetic and real data sets and the results are presented
showing the effectiveness of the approach.
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Figure 4. Sample slice from CT thorax data set and corresponding tumor segmentation (last row). The data set consists of 11 3D images of
the same patient acquired at different breathing stages. Difference slice images after (left) and before (right) registering two of the volumes
across breathing stages are shown in the remaining rows. The white areas in the right images are due to vertical movement of organs (in
the direction of z in the images) caused by breathing. These movements are completely compensated by registration.


