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ABSTRACT Current methods for image segmentation are confused
by artifacts such as highlights, because they are not based on any
physical model of these phenomena.  In this paper, we present an
approach to color image understanding that accounts for color
variations due to highlights and shading.  Based on the physics of
reflection by dielectric materials, such as plastic, we show that the
color of every pixel from an object can be described as a linear
combination of the object color and the highlight color.  According to
this model, all color pixels from one object form a planar cluster in the
color space whose shape is determined by the object and highlight
colors and by the object shape and illumination geometry.  We present
a method which exploits the color difference between object color and
highlight color, as exhibited in the cluster shape, to separate the color
of every pixel into a matte component and a highlight component.
This generates two intrinsic images, one showing the scene without
highlights, and the other one showing only the highlights.  The intrinsic
images may be a useful tool for a variety of algorithms in computer
vision that cannot detect or analyze highlights, such as stereo vision,
motion analysis, shape from shading, and shape from highlights.  We
have applied this method to real images in a laboratory environment,
and we show these results and discuss some of the pragmatic issues
endemic to precision color imaging.

I. Introduction

When we look at an image, we can interpret what we see as a
collection of shiny and matte surfaces, smooth and rough, interacting
with light, shape, and shadow. However, computer vision has not yet
been successful at deriving a similar description of surface and
illumination properties from an image.  The key reason for this failure
has been a lack of models or descriptions rich enough to relate pixels
and pixel-aggregate properties to these scene characteristics.  In the
past, most work with color images has considered object color to be a
constant property of an object.  Color variation on an object was

1attributed to noise. However, in real scenes, color variation
depends to a much larger degree on the optical reflection properties of
the scene, which cause the perception of object color, highlights,

2, 3shadows and shading. As a consequence, color variation cannot
be regarded to be of a merely statistical nature.  On the contrary, it
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exhibits characteristics that can be determined and used for color
vision.

This paper presents an approach to color image understanding that
accounts for color variations due to highlights and shading. We use a
reflection model which describes the color of every pixel from an
object as a linear combination of the object color and the highlight

4color. According to our model, all color pixels from one object form a
planar cluster in the color space.  The cluster shape is determined by
the object and highlight colors and by the object shape and
illumination geometry.

We present a method that exploits the color difference between object
color and highlight color, as exhibited in the cluster shape, to separate
the color of every pixel into a matte component and a highlight
component. Our method generates two intrinsic images, one showing
the scene without highlights, and the other one showing only the
highlights. These intrinsic images can be a useful tool for a variety of
algorithms in computer vision that cannot detect or analyze highlights,
such as stereo vision, motion analysis, shape from shading and shape

2, 5, 6from highlights. We demonstrate the applicability of our method
to real color images.

We begin by introducing the dichromatic reflection model which
describes the interaction of light with opaque dielectric materials.
Using this model, we describe the color variation on an object as a
function of the reflection properties of the materials, object shapes and
sensor characteristics.  Next, we demonstrate how our reflection
model can be used for the analysis of color images.  We present
methods to determine the illumination color and to detect and remove
highlights from real color images.  Finally, we discuss the implications
and the future direction of our work.

II. The dichromatic reflection model

When we look at a glossy object, we usually see the reflected light as
composed of two colors that typify the highlight areas and the matte
object parts. The dichromatic reflection model describes this
phenomenon for scene configurations in which a single light source of

4an arbitrary color illuminates opaque dielectric materials. As we will
show later in this paper, this model accounts well for real color data
under suitable conditions.

..mat.pre..

Figure 1: Light reflection at dielectric materials

Figure 1 illustrates the interaction of light with inhomogeneous,
dielectric materials, such as plastic and paint.  The material interface
immediately reflects some percentage of the light, according to
Fresnel’s law of reflection.  In general, the reflected light has
approximately the same color as the light source.  The remaining
percentage of the incident light penetrates into the material body,
which then scatters the light and absorbs it at some wavelengths,

7, 8, 9before it reemits the rest. The color of this light is determined
by the illumination color and the reflection properties of the material.
Common names for the reflection process at the interface are the
terms specular reflection, highlight or gloss, whereas the reflection



2

process in the material body is generally called diffuse reflection or
matte color. We refer to the two processes as interface and body
reflection because those terms make a more precise, physical
distinction between the reflection processes than the geometry-based
terms specular and diffuse reflection.  We will use this terminology and
the corresponding terms highlights and matte object color throughout
the paper.

Based on the above discussion, the dichromatic reflection model
*describes the spectral radiance L(λ,i,e,g) of a point in the scene as a

sum of an interface reflection component L (λ,i,e,g) and a bodyi
reflection component L (λ,i,e,g). The model assumes that the spectralb
properties of illumination and reflection on an object are independent
of the orientation of the surface, which is a reasonable

4approximation. We thus decompose each of the two reflection
components into a spectral composition c(λ) that describes a color,
and a magnitude, m (i,e,g) ∈ [0,1], that describes a geometric scale
factor:

L(λ,i,e,g) = m (i,e,g) c (λ) + m (i,e,g) c (λ) (1)i i b b

When a color TV camera records an image of a scene, it generally
uses three color primaries to represent the spectrum of the light that is
reflected from the objects towards the camera.  In the image formation
process, the camera transforms the light of the incoming ray at pixel
position (x,y) via tristimulus integration from an infinite light spectrum
into a triple of color values, C(x,y) = [r,g,b]. This process sums the
amount of light at each wavelength weighted by the transmittance of
the color filters and the responsivity of the camera. Because this is a
linear transformation, and because the photometric angles, i, e, and g
depend on x and y, the dichromatic reflection model can be applied to
color pixel values.  This allows us to describe the color pixel value
C(x,y) as a linear combination of the vectors representing the colors of
interface reflection C and body reflection C at the correspondingi b
point in the scene:

C (x,y) = m (i,e,g) C + m (i,e,g) C (2)i i b b

This equation describes how the pixel color C (x,y) of an arbitrary pixel
depends on the optical properties of the scene.  We will now discuss
the relationship between the colors of all pixels on an object.

III. Color variation and object shape

As a means to model the color variation over an entire object, we use
a color histogram in the color space, which is the projection of the
colors of all pixels from the object into the color space.

*i, e, and g describe the angles of light incidence and exitance and the phase angle
with respect to the surface normal, λ is the wavelength parameter
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The dichromatic reflection model assumes that there is a single light
source in the scene, without ambient light or inter-reflection between
objects. Under this assumption, the colors of all pixels from an object
are linear combinations of the same interface and body reflection
colors C and C . Color variation within an object area thus dependsi b
only on the geometric scale factors m and m while C and C arei b i b
constant. Accordingly, C and C span a dichromatic plane in thei b
color space, and the colors of all pixels from one object lie in this
plane.

Within the dichromatic plane, the color pixels form a dense cluster.
There exists a close relationship between the shape of such a color
cluster and the geometric properties of body and interface reflection
and the shape of the object.  We can use this relationship to
determine characteristic features of the color clusters. As an aid to
intuition, we will assume that body reflection is approximately
Lambertian and that interface reflection is describable by a function
with a sharp peak around the angle of perfect mirror reflection.  This is
a simplified view of the reflection processes in real scenes.  However,
as we will demonstrate, it is sufficient for our analysis of color images.

..cya.pre..

Figure 2: The shape of the color cluster for a cylindrical object

Figure 2 shows a sketch of a shiny cylinder.  The left part of the figure
displays the magnitudes of the body and interface components as
curves showing the loci of constant body or interface reflection.  The
right part of the figure shows the corresponding color cluster in the
dichromatic plane.  This represents the configuration observed in a
histogram of pixel values in the color space.  To relate the terminology
of the dichromatic reflection model to the shape of the color clusters,
we classify the color pixels as matte pixels, highlight pixels or clipped
color pixels. The following paragraphs discuss the characteristic
features of each of these classes.

Matte pixels are projections of points in the scene that exhibit only
body reflection in the direction of the viewer.  The color of such pixels
is thus determined by the color of body reflection, scaled according to
the geometrical relationship between the local surface normal of the
object and the illumination direction. Consequently, the colors of the
matte pixels form a matte line in the color space, in the direction of the
body reflection vector C .b

Highlight pixels are projections of scene points that exhibit both body
reflection and interface reflection in the viewing direction.  The colors
of all pixels in a highlight area that lie on a line of constant body
reflection m vary only in their respective amounts of interfacebH
reflection. The colors of these pixels thus form a straight highlight line
in the color space which is parallel to the interface reflection vector C .i
The line starts from the matte cluster at the position representing the
body reflection component m of the highlight pixels.  Combined withbH
the neighboring highlight pixels of slightly different amounts of body
reflection, all highlight pixels form a highlight cluster in the color space
that has the shape of a skewed wedge. If more than one highlight
exists on an object, each of them describes a highlight line in the color
space (see Figure 3).

The combined color cluster of matte and highlight pixels thus looks
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Figure 3: Color cluster shapes under changing illumination geometry

like a skewed T or comb. The exact shape of the cluster depends on
the illumination geometry. If the phase angle g between the
illumination and viewing direction at a highlight is very small, the
incidence direction of the light is very close to the surface normal.
According to Lambert’s law, the body reflection component is maximal
at such object points and thus, the starting point m for the highlightbH
line is at the tip of the matte line.  The wider g becomes at a highlight,
the smaller is the amount of underlying body reflection and, thus, the
greater is the distance between the tip of the matte line and the
starting point m of the highlight line (see Figure 3).  At the samebH
time, small positional variations on the object (as for neighboring
pixels) become less influential on the incidence and exitance angles i
and e. The highlight thus becomes dimmer and spreads out over a
larger area, covering a larger range of values of underlying body
reflection. As a result, the highlight line grows wider, exhibiting more
strongly the shape of a wedge.

Clipped color pixels are highlight pixels at which the light reflection
exceeds the dynamic range of the camera.  Depending on the color of
the object, the dynamic range may be exceeded at some points in one
color band but not in the other two, and the highlight cluster then
bends near the wall of the color cube that describes the limit of
sensitivity of that color band.  A second color band may saturate at
some brighter object points, causing the color cluster to bend again at
the edge of the limiting walls of both color bands.  At the innermost
points of the highlight the dynamic range of the camera may even be
exceeded in all three color bands, thus looking white, even though the
color of illumination may not be white.

..clu.pre..

Figure 4: Shape of color clusters in color space

Summarizing this discussion, the general shape of a color cluster is
displayed in Figure 4.  Although the color cluster of a specific object
may not fill the entire parallelogram, it reliably exhibits some features
that can thus be used and searched for by algorithms. Figure 4
displays these features as bold lines.  Color clusters generally provide
a matte line on which all matte pixels of an object area lie.  Depending
on the object shape and the illumination geometry, color clusters have
some number of highlight lines.  We use the brightest highlight line as
a representative of all these lines.  Further lines connected to the
highlight lines are clipped color lines. An algorithm can analyze a
color cluster by searching for these lines in the color space.  They
determine the general shape of the parallelogram and the orientation
of the dichromatic plane.

IV. Analysis of real color images

There exist some inherent assumptions in the dichromatic reflection
4model. However, as we will illustrate, the model accounts well for

real color data under suitable conditions.  We also present methods
for color image analysis that use the shape of the color clusters.
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A) Color clusters from real color images
We have taken a series of color images in the Calibrated Imaging
Laboratory at Carnegie-Mellon.  The scene consists of an orange, a
green and a yellow plastic cup under white or yellow illumination.
Black curtains on the walls were used to eliminate ambient light in the
visible spectrum of the scene.  We use a spectral linearization method
to compensate for the non-linear response of our camera to image
brightness. Figure 5a shows the linearized image of the orange, the
yellow and the green cup under yellow illumination.

a) linearized image (cups under yellow light)

b) color histogram (cups under yellow light)

c) fitted dichromatic planes (cups under yellow light)

Figure 5: Color clusters and dichromatic planes of cups under yellow
**light

We use a graphical display program which takes a color picture as
input and displays the colors of all pixels of selected object areas as a
color histogram in the color space.  Figure 5b displays the color
histogram of the pixels from the marked areas of Figure 5a in the color
space. The color space is shown as a color cube, with each
dimension of the cube representing the intensity scale of one of the
three color primaries.  Its origin is at the black corner of the cube.

The color clusters of the cups each lie approximately in dichromatic
planes. Within the planes, they form matte and highlight lines, thus
demonstrating that real color data follows the theory of the dichromatic
reflection model.  The color clusters also have clipping lines, due to
the bright intensity of the yellow illumination, as reflected from the
object in the middle of the highlights.  Accordingly, the colors in the
middle of the highlight areas look white, whereas the pixels closer to
the highlight boundaries exhibit yellow interface reflection (in addition
to the underlying amounts of the respective body reflection colors).

B) Determining the color of illumination
If several glossy objects of different color are illuminated by the same
light source, each object produces a dichromatic plane.  Because all
of these dichromatic planes contain the same interface reflection
vector C , they intersect along a single line which is the color of thei
illumination. This fact is demonstrated in Figure 5c.  Color constancy

11, 12algorithms can use this fact to remove the influence of the
illumination color from the body reflection component, thus
"normalizing" the image to a standard white illumination.

C) Detecting and removing highlights
We have developed and implemented an algorithm that uses the
shape of the color clusters to detect and remove highlights from color
images. The program projects the pixels of selected image areas into

** 10A set of color photographs is available from the authors.
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the color space and fits a dichromatic plane to the color data from
each image area.  The program then searches within each
dichromatic plane for the matte line, the brightest highlight line and
lines of clipped colors.  These lines are extracted from the dichromatic

13plane by using a recursive line splitting algorithm, and classified as
the matte vector, the highlight vector and clipped color vectors. The
program assumes that the line starting closest to the black corner is
the matte vector.  The next one connected to it is classified as the
highlight vector.  The remaining lines are assumed to describe clipped
color data.

Each color pixel of the image is then broken up into its reflection
components. In order to remove interface reflection, the program
projects the color of every pixel onto the respective dichromatic plane.
If the projected color is close to a clipped color vector, it is replaced by
the color at the end of the highlight vector.  The algorithm then
projects the color of every pixel along the highlight vector onto the
matte line.  The result is the intrinsic matte image of the scene.
Conversely, the program generates the intrinsic highlight image of a
scene by projecting the color of every pixel along the matte vector
onto a line that is parallel to the highlight vector but goes through the
origin of the color space (i.e.: onto the interface reflection vector C ).i

The program has been applied to the pictures of an orange, a yellow
or a green plastic cup under white or yellow light.  Figure 6 shows the
results we obtained from running the algorithm on an image of the
orange cup under white light.  Figures 6a and 6b show the image of
the cup and the color cluster that is generated by projecting the pixels
from the marked object area into the color space. Figures 6c and 6d
display the resulting intrinsic images of our algorithm.  Figure 6c
shows only the highlight, and Figure 6d shows the object without the
highlight. The results of applying the algorithm to the other pictures
are similar (see figure 7 for yellow illumination on the orange cup).

a) linearized image (orange cup under white light)

b) color histogram (orange cup under white light)

c) intrinsic highlight image (orange cup under white light)

d) intrinsic matte image (orange cup under white light)

Figure 6: Intrinsic images of the orange cup under white illumination

..photo..

Figure 7: Intrinsic images of the orange cup under yellow
illumination

A qualitative inspection of the intrinsic images reveals that our
algorithm is able to separate the highlights from the body reflection
component. Note that the highlight image displays both the highlight
from the middle of the cup and the small amount of gloss that is
reflected from the handle of the cup.  However, the current algorithm
does not yet detect the interface reflection color reliably.  The reason
for this is the following:  the scene of Figure 6 was illuminated by white
light. In the color cube, the white light corresponds to the diagonal
direction, from the black corner to the white corner. Since the
highlight line of this image starts with an already high amount of
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mainly red body reflection, the corresponding diagonal direction for the
interface reflection component is hard to detect and, as a
consequence, the clipping vector could not be distinguished from the
highlight vector in this image.  For this reason, the computed highlight
vector misses the red component and the highlight image looks cyan.
The algorithm can be improved by using the intersection of several
dichromatic planes as an indication of the highlight vector (see figure
5).

The potential utility of the intrinsic images stems from the fact that
both the matte and the highlight image have simpler geometric
properties than does intensity in a monochrome image, that
represents a weighted sum of the two. A subsequent process to infer
object shapes from the geometric properties of highlights or shading
can thus be performed more easily on the intrinsic images than on the
original image. Furthermore, the intrinsic matte image is relatively
insensitive to changes in viewpoint, as occurring in an image
sequence or with stereo image pairs.  Accordingly, the detected image
features (lines or interesting points) from matte images are more likely
to be at a fixed position on the object than image features taken from
the original image, some of which might have been caused or
disturbed by highlights.  This is important for stereo vision and motion

5, 6analysis.

V. Conclusions and further work

In this paper, we have demonstrated that it is possible to analyze real
color images by using a color reflection model. Our model accounts
for highlight reflection and matte shading, as well as for the limited
dynamic range of cameras.  By developing a physical description of
color variation in color images, we have developed a method to
separate highlight reflection from matte object reflection.  The resulting
two intrinsic images are promising for improving the results of many
other computer vision algorithms that cannot detect or analyze
highlights. To demonstrate this, we plan to combine our approach

14with a photometric stereo system to guide a robot arm.

The key point leading to the success of this work is our modeling of
highlights as a linear combination of both body and interface
reflection. In contrast, previous work on highlight detection in images
has generally assumed that the color of the pixels within a highlight is
completely unrelated to the object color.  This assumption would result
in two unconnected clusters in the color space:  one line or ellipsoid
representing the object color and one point or sphere representing the
highlight color.  Our model and our color histograms demonstrate that,
in real scenes, a transition area exists on the objects from purely
matte areas to the spot that is generally considered to be the highlight.
This transition area determines the characteristic shapes of the color
clusters which is the information that we use to detect and remove
highlights. This view of highlights should open the way for quantitative
shape-from-gloss analysis, as opposed to the current binary methods
based on thresholding intensity.

Our approach to color image analysis may influence research in other
areas of color computer vision.  The color histograms demonstrate
that all color pixels from one object (material) form a single cluster in
the color space.  A color cluster thus groups pixels into areas of
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constant material properties, independently of illumination geometry
influences, such as shading or highlights. This finding can be used by
color segmentation algorithms to distinguish material changes from
shading or highlight boundaries.  Furthermore, the shape of the color
clusters reveals some information about the illumination geometry and
the object shapes.  We are currently investigating these implications of
the model to improve color image understanding methods.

Our approach to color image understanding by analyzing light
reflection in color histograms may also be applicable to more complex
illumination conditions, including ambient light, light sources in several
colors, shadow casting and inter-reflection between objects. If a
constant amount of ambient light illuminates the scene from all
directions, a constant color vector describing its color must be added

15to the reflection model. This induces a translational color change
in the reflected light at all object points, and the color cluster moves

4accordingly in the color space. Inter-reflection between objects is
illustrated in figure 8.  In this case, the color of the illuminating light at
various places on an object changes due to the changing amount and
color of light reflected from neighboring objects towards the object.
The same occurs if several lights sources in different colors exist in
the scene.  The changing illumination color affects the colors of both
body and interface reflection from the objects. The color clusters in
the color space reflect these dependencies as additional segments,
attached to the previously described cluster parts.  As a result of the
changing body reflection color, the color clusters of neighboring
objects have additonal segments that are directed towards each other.
These segments are not necessarily linear. When combined, the
body reflection segments from clusters of neighboring objects exhibit
the shape of a W, as demonstrated in the upper right box of Figure 8.

blankspace (4.0 inches)
Figure 8: Inter-reflection between the rings of a toy

We are also considering extensions of the model to account for non-
dielectric materials such as metals.  When light hits the surface of a
metal, it is immediately absorbed at some wavelengths, according to
the absorption properties of the metal, and the remaining light is
immediately reflected back into the surrounding medium.  Thus, light
reflection from metals is governed by only one process which takes
place at the object interface.  In this case, the reflection model thus
consists of a single term, and the light reflected from the object forms
a linear cluster in the color space.  The direction of the line depends
on the absorption properties of the metal.  The distribution of points on
the line is governed by the laws of mirror reflection and scattering on

16rough surfaces. Similar findings have been described by Healey
17and Binford. However, their approach relies on spatial as well as

spectral properties of light reflection whereas ours is purely spectral,
describing the reflection properties along the entire object globally in a
histogram.

Although the current method has only been applied in a laboratory
setting, its initial success shows the value of modeling the physical
nature of the visual environment.  Our work and the work of others in
this area may lead to methods that will free computer vision from its
current dependence on signal-based methods for image
segmentation.
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