
We Need Interactive Data Interpretation
Rather Than Interactive Data

 Visualization

A Position Paper for the
Workshop on Scientific Visualization Environments

at Visualization ’91

Gudrun J. Klinker

Cambridge Research Lab,

Digital Equipment Corporation

August 30, 1991



- 1 -

1  Introduction

General-purpose visualization systems, such as AVS [7], have recently received a lot of atten-
tion in the visualization community. However, many application programmers still prefer writ-
ing their own visualization code over using a standard visualization system. Why? What fea-
tures are missing from current systems that prevent real applications from using them? In this
position paper, we emphasize that certain application areas, such as robotics or medical imag-
ing, need an interactive data interpretation component in addition to straightforward data visu-
alization. We use the term "interactive data interpretation" to describe the process of generating
models from data measurements which are often provided in multi-dimensional, multi-modal
arrays. The process is sometimes also referred to as "inverse modeling". Typical examples of
data interpretation would be determining the outline of an object in a two-dimensional image or
fitting a surface model to a three-dimensional volume. In either case, the process could be per-
formed completely automatically (the typical case in computer vision) or partially interactively
by the user, as done in [1] to outline a particular type of cell in electromicroscope data. 

We present a list of basic features that need to be included in today’s visualization systems to
make them useful for interactive data interpretation. We draw from our experience of having
implemented a toolkit, VDI [5], for visualizing computer vision applications. We are currently
in the process of transferring the major concepts of VDI into AVS. We expect such extensions
to AVS to be useful in many application areas, such as computer vision, medical imaging and
seismic data analysis.

2  Merging Geometric Data with Array Data

A key issue in interactive data interpretation is the combination of geometric and array data. As
discussed above, data interpretation systems often use large amounts of multi-modal, multi- di-
mensional array data. The user is interested in visualizing and (manually and/or automatically)
interpreting the arrays, potentially by combining information from several data sources and by
understanding the relationships between several arrays. The interpretation results are often rep-
resented in geometric form and they need to be overlaid onto the array data such that the user
can evaluate their quality. Some research on mixing array data with geometric data is currently
under way [4]. But so far, standard visualization systems provide little support for merging the
data formats.

3  Data Format vs. Data Representation

Traditionally, data format and data representation have been tightly coupled: arrays have been
displayed as images or volumes while geometric models have be rendered as lines and surfaces.
Systems also often make assumptions that relate presentation styles to the dimensionality of the
data and to specialized, pre-defined viewing preferences: image sequences are shown as movie
loops, color data is shown using the color capabilities of the display, etc. However, this close
connection between data format and representation is overly restrictive. Array data can be



- 2 -

shown both in an intensity-based display mode and as geometric data, e.g.: as graphs, terrain
maps (surfaces), flow vector fields, or as printed numbers. Sometimes, a user may be interested
in viewing a color image as a movie loop of the three color bands, or three selected black-and-
white images of a time sequence as the red, green and blue bands of a single color image. Deci-
sions on how to display certain array data should be made by the user of the visualization envi-
ronment by selecting appropriate parameter values rather than be hardwired into the system.
Below follows a list of what we consider to be essential features of a future data visualization
and interpretation system.

3.1 Variable views of array data

When looking at a particular (high-dimensional) array of data, users may want to see it in vari-
ous different ways, depending on their current interest. The users should be able to specify the
viewing parameters interactively. Such parameters include, of course, the typical cropping,
zooming, subsampling and color mapping selections that are available in most current systems.
Beyond that, there need to be mechanisms to specify how many (and which) dimensions of a
high-dimensional array should be displayed and how the remaining (undisplayed) dimensions
are to be treated. Several issues are involved in this data reduction process.

First, we need to specify along which dimensions we want to reduce the data. In the simplest
case, the data is reduced exactly along the undisplayed dimensions. However, users may prefer
to reduce the data along a linear combination of array dimensions. Such mechanisms can be
found in today’s volume visualization systems, displaying arbitrarily oriented 2d-slices of 3d-
volumes. The mechanisms will have to be extended towards higher-dimensional arrays.

Second, the data reduction procedure must be specified for each reduced dimension. Should the
data be accumulated (projected) along a particular reduction direction, or should it be sliced, or
should some or all of the data values be kept in a vector and displayed simultaneously using
some encoding scheme or sequentially as a movie loop? If the data is to be sliced, the slice po-
sition needs to be defined. In the case of data projection, the projection function needs to be
specified. Today’s visualization systems typically use additive accumulation along the projec-
tion direction (e.g.: to display partially transmittant volumes). However, a statistician working
with arrays of probability data might prefer multiplicative accumulation. And even other accu-
mulation functions are conceivable. Multiplying the data elements by weights that are a func-
tion of the position and value of each element is also useful. Furthermore, users may want to
specify their own functions to compute interpolated or subsampled values along the projection
direction from the grid of data elements.

Finally, the question arises how multi-variate information is to be presented on the screen. As
mentioned in the beginning of this section, the data could be presented in many different ways,
such as in an intensity-based display, as a graph, or as printed numbers. For intensity-based dis-
plays of arrays with more than one element per data position, the data could, for example, be
shown in a movie loop, as a color image, a stereo image (viewable through special glasses), a
blink comparator alternating between two (or more) values per pixel, or by iconic symbols such
as flow vectors or stick symbols[2], potentially combined with acoustic output. If the data is
shown as a graph, several values per pixel can be overlaid as several graphs in a single display.
For printed numbers, the data vector can be printed out at every displayable data position. Cur-
rent systems typically make assumptions as to what kind of data is to be displayed in what dis-



- 3 -

play style. We suggest to leave such decisions up to the user. The user interface should provide
mechanisms for the user to specify by what display mechanism the information is to be pre-
sented. Furthermore, the interface should provide the means for specifying how the data is
mapped onto any particular data representation. For example, a user might want to use a loga-
rithmic mapping function for relating data values to intensities or to the shape of iconic sym-
bols.

3.2 Multiple views of geometric and array data

For many reasons, users may be interested in analyzingrelationships between data from one or
more data sources that are displayed simultaneously in one or more windows: on the one hand,
they may want to look at a single array, displayed in several different representations, as dis-
cussed above, to benefit simultaneously from several different visualization cues. On the other
hand, they may be interested in investigating relationships between several arrays and poten-
tially some geometric data that may be the result of previous data interpretation steps. In that
case, it might sometimes be most convenient to overlay all data in a single display window,
whereas at other times, a side-by-side presentation in several windows is more helpful. In most
general terms, users may want to visualize n sources of information in m windows, some over-
laid and some shown side-by-side. An interface for mapping arrays to windows and for specify-
ing relationships between windows will be needed.

If a relationship between several display windows is established, the visualization system has to
provide aids for the user to relate a pixel position in one window to positions in the other win-
dows. Such aid can be provided via cursor-linking. For presenting relationships between several
data sources in a single window, we suggest two mechanisms: Users can either overlay the se-
lected arrays in the window, or they may want to use some of the arrays as masking operations
on the other arrays. In the latter case, the masks need not be displayed but they rather mask out
some of the data in the remaining arrays. In all cases, we need to consider how to show relation-
ships between arrays with different offsets, sizes and dimensions. As before, we suggest to
leave the decisions up to the user and to provide an interface via which the user can specify
linking information between combinations of arrays. This requires an interface to specify coor-
dinate transformations between arrays. If arrays of different dimensionality exist, users have to
define whether they want to reduce the data of the higher-dimensional array, or whether they
prefer spreadint the information of the lower-dimensional array over more dimensions.

Besides considering variable array formats, we also need to expect that different data sources
will be shown in different graphical representations. How about overlaying a terrainmap,
printed numbers or a vector flow field from one array on an intensity display of another array?
Similarly, users may want to overlay geometric data, such as the rendering of a scalpel or a
medical probing device, on intensity data (e.g.: X-ray data). The data sources now have to be
zoomed individually such that all renderings can be shown in appropriate size.



- 4 -

4  System Architecture

A visualization environment should primarily be a very generalframework which us-
ers/programmers can customize as needed. The framework mainly provides a few, key capabili-
ties and modules plus the infrastructure for transferring any kind of data between any processes.
The infrastructure and the modules are used to visualize and interpret any kind of data in its
relationship to any other data in the system. The system needs to provide several implementa-
tion layers such that an application programmer can freely customize the environment while the
final user of the system sees a "turn-key" system adapted to the environment in which it is oper-
ating. We expect that the commonly used visual programming paradigm (e.g.: in AVS) may
serve as a useful framework, if it is extended appropriately. Visual programming encourages
system modularity. Such modularity allows programmers to customize the system, replacing
some particular modules by their own experimental code while still benefiting from the capa-
bilities of the rest of the system.

4.1 Module hierarchies and automatic network customization

Generating large networks from many small modules may become quite cumbersome, and the
resulting network may be hard to visualize on a screen. To deal with large networks, the system
needs to provide interactive mechanisms for the user to group modules into meta-modules, thus
creating module hierarchies. Beyond simply replacing a group of module icons by a single new
icon, such a mechanism may incorporate capabilities for recompiling the code of the initial
modules into a single new code segment, thus improving performance by reducing the commu-
nication cost between the initial modules [3].

Furthermore, the user must be allowed to set the networks up automatically. AVS provides
mechanisms to save networks and read them back in, as well as a scripting system via which an
entire user interaction with a network (setting up the network plus changing parameters interac-
tively) can be preplanned. Beyond such capabilities, users might require that modules can send
preferred parameter defaults along with the data to other modules.

4.2 Mechanisms for incremental data interpretation

If a user wants to use the visualization environment for interactive data interpretation, in addi-
tion to mere visualization, the currently typical data flow environment needs to be extended in
two important ways:

First, the network needs to allow for circular data flow: the interpretation process generates re-
sults which may need to be improved or extended incrementally. For example, a physician may
start by roughly outlining a particular cell in an electromicroscope image and then incremen-
tally generate more and more precise outlines by using semi-automatic mechanisms like snakes
[1] until the contour exactly matches the cell boundaries. AVS has recently added circular data
flow capabilities to its visual programming paradigm. We are currently investigating its useful-
ness for computer vision.

Second, incremental interpretation requires permanent storage capabilities: users may need to
store intermediate results from some or all iterations since they may want to go back to previous
stages of the interpretation process (backtracking) and embarque along different, more promis-



- 5 -

ing directions of data interpretation than the direction previously pursued. Already today, users
of visualization systems can organize their own permanent storage capabilities, e.g.: by saving
relevant iterative data in files. However, to spare the application programmer the burden (and
inefficiency) of maintaining such data files, the visualization system should provide access to
data bases.

4.3 Customizing the visual programming environment

Apart from user-extensible module libraries and an interactive network editor, other parts of the
visual programming environment should be customizable as well. Most importantly, there is the
module scheduling engine which decides on the sequence in which runnable modules will be
activated. In data flow networks with circular data flow and shared, incrementally changeable
data, the sequencing of module activation has direct effect on the interpretation results. Further-
more, users may be interested in running their data flow network on a set of parallel machines.
In both cases, the users will need to experiment with the scheduling algorithm.

Second, the screen layout should be customizable. Currently, the display screen gets cluttered
with information from many different contexts, such as the data flow network, the visualization
display windows, plus windows (such as electronic mail) from the operating system. With
multi-headed screens emerging, the user should have the freedom to divide the screen space
more wisely.

Finally, the set of widgets that are associated with a particular parameter type should be
programmer-extensible. The choice of appropriate widgets can be crucial to the look-and-feel
of applications, making a system acceptable or unacceptable to a user group. We doubt that the
developers of a visualization environment will be able to foresee all potential uses of widgets
for all applications. Just as X provides mechanisms rather than policies [6], visual programming
environments should provide a framework to which many different styles of interaction can be
attached.

Acknowledgments

Thanks to all permanent and temporary members of the Visualization Group (Ingrid Carlbom,
Richard Szeliski, William Hsu, Keith Waters, David Tonnesen, Demitri Terzopoulos, and Ste-
phane Lavallee) who have participated in discussions on how to visualize the data used in our
group.



- 6 -

References

1. I. Carlbom, D. Terzopoulos, and K.M. Harris. Reconstructing and Visualizing Models of
Neuronal Dendrites. Proc. CG International’91: Visualization of Physical Phenomena, Bos-
ton, MA, June 24-28, 1991, Springer-Verlag, Tokyo, Japan.

2. G. Grinstein, R.M. Pickett, M.G. Williams. EXVIS: An Explanatory Visualization Environ-
ment. Graphics Interface, pp. 254-261. London, Ontario, Canada, June, 1989.

3. N. Hunt. IDF: A graphical data flow programming language for image processing and com-
puter vision. Technical Report TR-90-05, Teleos Research, 576 Middlefield Road, Palo
Alto, CA 94301, August 1990.

4. A. Kaufman. Introduction to Volume Synthesis. Proc. CG International’91: Visualization
of Physical Phenomena, Boston, MA, June 24-28, 1991, Springer-Verlag, Tokyo, Japan.

5. G.J. Klinker. VDI- A Visual Debugging Interface for Image Interpretation (and Other Ap-
plications). Proc. 2nd Eurographics Workshop on Visualization in Scientific Computing,
Delft, Netherlands, April 22-24, 1991. Extended version available as technical report CRL
91/2, Digital Equipment Corporation, Cambridge Research Lab, One Kendall Square,
Cambridge, MA, 02139, March 1991.

6. R.W. Scheifler and J. Gettys. The X Window System. ACM Trans. Graphics 5(2): 79-109,
April, 1986. 

7. C. Upson, T. Faulhaber, Jr., D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz, and
A. van Dam. The Application Visualization System: A Computational Environment for Sci-
entific Visualization. IEEE Computer Graphics and Applications 9(4): 30-42, 1989.


