
An Environment for Telecollaborative Data Exploration

Gudrun J. Klinker

Digital Equipment Corporation, Cambridge Research Lab
One Kendall Square, Bldg. 700, Cambridge, MA 02139

Abstract

This paper presents an environment for telecollab-
orative data exploration. It provides the following ca-
pabilities essential to data exploration: (1) Users can
probe the data, defining regions of interest with ar-
bitrary shapes. (2) The selected data can be trans-
formed and displayed in many different ways. (3)
Linked cursors can be established between several win-
dows showing data sets with arbitrary relationships.
(4) Data can be displayed on any screen across a com-
puter network, allowing for telecollaboration arrange-
ments with linked cursors around the world. (5) Our
system is user-extensible, allowing programmers to
change any component of it while keeping the remain-
ing functionality. We demonstrate how the system
can be used in several applications, such as biomedi-
cal imaging, robotics, and wood classification.

1 Introduction

Several systems for visualizing data have recently
been developed with the intent to free users from the
burden of graphics programming [7, 8, 13, 15, 16, 17,
18, 19, 21, 22, 23, 24, 27, 28]. Why do many ap-
plication programmers still prefer writing their own
visualization code over using such visualization sys-
tems? In part, this may be the case because appli-
cations such as biomedical imaging, robotics, seismic
data analysis, and wood classification require highly
interactive user-customizable tools to explore and in-
terpret their data [12].

Stand-alone systems, such as EXVIS [7], KBVision
[28] and PVWave Point & Click [15], have provided

various data exploration tools. Yet, such systems
become hard to adapt to new aspects of visualiza-
tion research, due to their monolithic structure. To
provide flexibility, other systems, like AVS [27], offer
visual programming interfaces with which users can
assemble their own networks of communicating pro-
grams (modules). Despite such flexibility, these new
systems have until recently not been well suited for
data exploration because they have lacked essential
interactive capabilities. For example, the X-based
[25] AVS module to display images used to encapsu-
late all user interaction within the module, providing
no feedback to other modules. Application program-
mers could not exploit the full interactive power of X
in their own AVS modules1. This missing feedback
channel was crucial because users need to probe the
data and define regions of interest. They also need to
see the selected areas in relationship with other data,
such as in a collection of CT scans shown side-by-side
on a screen. Interactivity involving several windows
could not be achieved easily using the programming
style of AVS.

Current systems also dilute the distinction between
two concepts, data representation (storage) and data
presentation (display). Users often need to view the
same data in many different presentations. It is im-
portant that users be able to define mappings be-
tween selected dimensions of a data set and a set of
available display capabilities [2, 9, 13, 15]. Systems
must also be able to mix several data types in a single
view, such as geometric data and array data.

1Improved interactive capabilities in the newest release of
AVS (Version 5) are based on the concepts presented in this
paper.



This paper describes a system designed to help
users analyze data interactively. It uses the network
editor and the data flow model of AVS-V4. But it
changes AVS-V4 in most other respects. Our sys-
tem provides tools to merge data of different data
types into a single view, overlaying geometric data
on images. Its new X-based display data module also
provides a feedback channel to make user interaction
available through an output port to other modules.
All our modules send a log record along with the data
in which they record coordinate transformations, as
well as other descriptive information about the data.
Other modules can then use the log record to relate a
selected window position to the pixel position in the
original data set. With this mechanism, we can at-
tach arbitrary data exploration and data interpreta-
tion routines to windows and establish linked cursors
between any number of windows. We can establish
very flexible telecollaboration arrangements by send-
ing windows to other displays. Colleagues can then
annotate the same data at both displays.

The next three chapters present three different as-
pects of our approach: a) the distinction between
data representation and data presentation, b) data
exploration tools, and c) telecollaboration capabili-
ties.

2 Data representation versus data
presentation

There are many ways to view a data set. Typ-
ically, images are shown as images, histograms as
graphs, etc. This practice dilutes the distinction
between two concepts, data representation (storage)
and data presentation (display). Data exploration
applications often need to see the same data in differ-
ent presentation styles, depending on the exploration
focus. Users need to define mappings between speci-
fied dimensions of data sets and sets of available dis-
play capabilities [2, 9, 13, 15]. Stand-alone systems,
such as EXVIS [7], have explored various presenta-
tion styles like icons or sound generation. But the
systems are hard to adapt to new aspects of visu-
alization research, due to their monolithic structure.
In contrast, our data presentation tools are available
as separate modules which can be easily exchanged.

Geometric and intensity-based presentations can be
combined into a single view.

2.1 Presentation styles

We provide the following presentation styles:

• Intensity- and color-based displays: As an exam-
ple, Figure 1 shows a color image of a scene with
several plastic objects [11].

• Graphs and surface plots: Figure 2 shows surface
plots of the yellow and blue rings from Figure 1
(white rectangle).

• Icons such as vectors, face drawings[6], and stick
figures[7] have been used successfully in several
applications.

• Printed numbers: The individual pixel values of
an image (or subimage) are shown as a matrix
of numbers.

• Overlays: Coherence between several presenta-
tion styles can be established by overlaying them
in a single window. Figure 3 shows normalized
color vector icons and printed numbers overlaid
on the image data from the yellow and blue rings
in Figure 1. Figure 4 shows the surface plots of
Figure 2 in combination with a slanted view of
the image data.

• Interleaving: Several images can be overlaid in a
single window by interleaving the data pixel-by-
pixel.

• Time: Movie loops and blink comparators [5]
exploit motion parallax in the time dimension to
establish visual coherence between related pixels
in several images.

• Audio: Acoustic data presentation has found its
way into visualization environments [3, 10, 26].
Current studies towards including such capabil-
ities into our system are in progress[20].



Figure 1: Color image of scene with plastic objects.

Figure 2: Surface plot of color variation in plastic
scene.

Figure 3: Numbers and vectors overlaid on the image
data.

Figure 4: Surface plot overlaid on a slanted view of
the image data.



2.2 Data mapping

When the data is presented in a particular style,
it typically needs to be adapted to the limited capa-
bilities of the hardware. In particular, unbounded or
high-precision data values need to be adjusted to the
specified range of the display device. Such mapping
can take various forms: linear or non-linear scaling,
subsampling or interpolation, cropping or threshold-
ing with a specified maximum and minimum, wrap-
ping modulo a specified value, substitutions accord-
ing to a user-defined lookup table, random substitu-
tions, permutations, and combinations of all of these
techniques. Many such concepts are well-established
colormapping techniques. Yet, the concepts can ap-
ply equally well to other dimensions of a data set,
providing concepts, such as thresholding (cropping)
and non-linear scaling (warping) to geometric dimen-
sions or time.

3 Data exploration

Many applications, such as biomedical imaging,
need to explore their data, not merely view it. They
need interactive data probing tools and mechanisms
to establish visual relationships between different
parts of the data.

3.1 Interactive data probing

We have extended AVS by providing a feedback
channel through which users can send arbitrary cur-
sor and keyboard commands from the display win-
dows back into the AVS network – where the com-
mands are then available to any suitable module.
With this extension, users can interactively set up
many different data probing arrangements. We will
now present several example data exploration appli-
cations which use the feedback channel. It is impor-
tant to note that – although the examples do not
provide new capabilities but that we provide an im-
proved infrastructure in which it is easy to interac-
tively arrange for such data exploration functionality
and to customize it.

Figure 5 shows a very basic data probing arrange-
ment on a CT image of a human chest. The setup

Figure 5: Basic example of a data exploration net-
work.

consists of three modules which read the chest image,
display it, and overlay a software-cursor. When a user
selects a pixel in the image, the display data module
sends the position as part of a log record through
the feedback channel to the position cursor module.
Since any number of modules could, in principle, have
preceded the position cursor module and altered the
geometric arrangement of pixels in the window (e.g.,
via zooming, warping, scrolling, projections, etc),the
selected window position is not necessarily identical
to the array index of the pixel in the image. The po-
sition cursor module uses the log record to transform
the window position into the correct array index. It
then sends geometric drawing commands back to the
display data module to overlay a cursor on the image
data.

3.2 Regions of interest

The data probing arrangement can be extended to
define a region of interest, as shown in Figure 6. The
crop image module selects a subarea from the chest
image, using the cursor position and the log record to
determine the subarea (the black rectangle in Figure
5). A second display data module shows the cropped
area in a second window. Interactive window resiz-
ing allows users to zoom the view. Statistical data
analysis, such as the computation of mean and vari-
ance or other moments, can also be performed on the
selected region of interest.



Figure 6: Network to select an enlarged region of
interest from the chest image and compute its mean
and variance.

3.3 Cursor linking

We provide cursor linking capabilities to help users
explore the relationship between several data sets.
In a typical cursor-linking arrangement, several win-
dows each have their own software cursor to indicate
the current cursor position. The cursor can be repo-
sitioned in any window, affecting the cursors in all
windows. Live links for visualizing the relationship
between several data sets are available in some cur-
rent visualization systems [15, 28]. Yet, those are
closed systems without a visual programming inter-
face. They provide only limited capabilities which
cannot be extended easily by the user.

In our system, users can configure arbitrary cursor-
linking arrangements of varying complexity. In a sim-
ple case, linked cursors show corresponding pixels in
images of identical dimensions and size, such as two
CT images. In a slightly more complicated case, the
cursors are linked between images of different sizes,
such as between different levels of an image pyra-
mid or between an image and a cropped and zoomed
subimage. The cursor-linking mechanism then has to
multiply the pixel index with the appropriate scale
factor or add the cropping offset. In yet more com-
plicated cases, the linking mechanism can be used to
help visualize the relationship between data sets of
different dimensions, such as an image and its his-
togram.

Figure 7: Network to view pre- and post-contrast
MR-images and their difference image with linked
cursors.

Such cursor linking arrangements will now be pre-
sented in detail. The demonstrations are exam-
ples of a very general concept. Any two data sets
with a known semantic relationship can be linked by
inserting the appropriate transformation algorithm
into the cursor linking arrangement. Further exam-
ples could include cursor transformation mechanisms
for non-rigid image warping, fish-eye views, the his-
togrammed analysis of some derived image properties
(such as edges, texture, and flow vectors), or the joint
visualization of CT and MR data.



3.3.1 Cursor linking between several images

Figure 7 shows two registered pre- and post-contrast
MR images of a human head. A third image shows
the pixel-wise differences. The bright pixels indicate
areas which the solution has penetrated. On the
screen, the images are shown in three windows with
linked cursors: When a user identifies an interesting
position in one of the windows, the corresponding
pixel positions are marked in all three windows. The
network in Figure 7 shows that this functionality is
achieved by multiplexing the cursor positioning out-
put from all three display data modules in the net-
work through a cursor funnel and then sending it
on to three position cursor modules. Each position
cursor module creates geometric drawing commands
which are then sent back to the respective display
data modules. The log mechanism ensures correct
cursor positioning even if different windows show the
data at different scale factors.

The same cursor-linking mechanism can be used
to explore corresponding pixels on several levels of
an image pyramid in computer vision applications.
The lowest level of the pyramid shows the image at
full resolution, higher levels of the pyramid show the
data at increasingly lower sampling rates.

3.3.2 Cursor linking between images and his-
tograms

The cursor-linking mechanism can also be used to es-
tablish relationships between windows with very dif-
ferent types of dimensions, such as an image and its
histogram. In this case, selected cursor positions flow
through special transformation modules which estab-
lish the correct relationships between image pixels
and histogram counts, i.e, they use the data value of
a selected image pixel as the index into the histogram.

We use the cursor linking mechanism to explore
the relationship between color images and color his-
tograms (three-dimensional scatter plots). A color
histogram consists of four dimensions, (r, g, b, count).
It is stored as a volume, with each voxel (r, g, b) in-
dicating how many pixels in the original color image
have this particular color value. The color histogram
is presented, using a z-buffering algorithm and ignor-

Figure 8: Linked cursors for the plastic scene and its
color histogram.

ing all voxels with counts below a threshold. The
voxels are displayed either as intensity data accord-
ing to their count-value, or as color triples (r, g, b)
according to their position in the histogram.

In Figure 8, the blue and yellow rings from Figure
1 and its color-encoded histogram are shown side-by-
side. The left branch of the network above shows the
modules which process and display the color image.
The modules in the right branch operate on the his-
togram. Users can outline an area in the color image
with the module handsegment. The system then gen-
erates a new color histogram, using only the pixels in
the outlined area. Conversely, users can also outline
an area of the color histogram. In that case, the sys-
tem marks all image pixels which have colors in the
selected part of the histogram. In Figure 8, a small
area, outlined in red, has been selected in the color
histogram. The resulting image pixels are marked
in red, indicating an interreflection area between the



two rings.

Figure 9: Color histogram analysis for wood samples.

Color histograms can be used in a similar way to
develop automatic wood inspection algorithms [4]. In
such research, various impurities, such as knots and
stains, need to be detected and classified. They typ-
ically cause color shifts in the wood, yet they are
hard to recognize automatically. Figure 9 shows a
wood sample with a bluish wood stain. The bluish
colors are hand-selected in the color histogram. The
corresponding pixels in the lower left image identify
a significant portion of the stained area. With this
interactive viewing arrangement, researchers can in-
vestigate the characteristic color clustering properties
for different wood samples before they design appro-
priate automatic wood inspection algorithms.

The semantics of any relationship between data
sets can be encoded in transformation modules. Ex-
tensions to higher-dimensional data sets, such as data
bases of census data or financial data, can be created.

4 Telecollaboration

Telecollaboration is integrated in our data explo-
ration environment. All capabilities available to one
user are also available to two or more users working
on the same problem. This approach stands in con-
trast to current practice where users have to switch
back and forth between exploring data in one system
and sharing the results in a different system.

We can provide integrated telecollaborative capa-
bilities because we combine cursor linking with a win-
dow migration capability. Users can send any win-
dow to any screen simply by specifying a display
name parameter. We have successfully demonstrated
telecollaborative arrangements between Chicago and
Boston as part of the Innovation Showcase at Sig-
graph 92, as well as between Boston and Sweden.

Figure 10: Basic tele-collaboration network.

Our system gives users the flexibility to set up col-
laboration environments with various degrees of com-
plexity. In a simple case, collaborators share one win-
dow, with a mechanism to allow each person to in-
dependently annotate the data, as shown in Figure
10: Two display data modules – one of which may
send the window to a remote display – each receive
the same input data. The feedback channels of both
modules are sent to annotating modules which gen-
erate sequences of differently colored drawing com-
mands. The drawing commands from both windows
are then merged and sent back to both display mod-
ules so that the annotations are shown in both win-
dows. This arrangement is amenable to teleradiology
applications where a radiologist and a surgeon jointly



want to annotate an image. Each can annotate the
data in a different color, both see the results.

Figure 11: Tele-collaboration network with individu-
ally customizable views.

Users can also share more complicated exploration
arrangements, such as the joint analysis of the pre-
and post-contrast MR images of Figure 7. In the
process, collaboration partners can individually cus-
tomize their views, e.g, by resizing or repositioning
their own windows. Specific modules, such as col-
ormapping modules, can also be inserted into individ-
ualized data presentation paths to accomodate col-
laborators with different viewing preferences. If one
collaborator wants to see the data in a different pre-
sentation style than the other person or if he wants
to enhance the image, he can be accommodated as
well. Such individualized exploration capabilities in a
telecollaborative setup are shown in Figure 11. Along
similar lines, the color histogramming network can
provide individualized three-dimensional viewing ori-
entations [14].

We expect these telecollaborative capabilities to be
an important extension to data exploration. Many
data exploration tasks in real applications are group
efforts rather than problems solved by an individual.
There will be an increasing demand for systems that
allow researchers to share their views and truly ex-
plore them with their colleagues. The current situa-
tion where researchers explore data in one system and
share it in another one is an obstacle to remote collab-

oration. Our system can enhance existing teleconfer-
encing technology in this respect. Existing systems
provide sophisticated techniques to send compressed
image data and sound for real-time teleconferencing.
Tools also exist to share and edit arbitrary X-based
windows on several displays [1]. Such tools are well
suited for sharing text windows but they lack the
means to provide in-depth exploration capabilities for
large data sets. We expect future telecollaboration
systems to combine traditional window sharing and
teleconferencing arrangements with data exploration
systems to analyze large data sets.

5 Conclusions

Data exploration imposes special requirements on
visualization environments. It requires a high degree
of interactivity which has been ignored by current vi-
sualization systems. Our system is designed to pro-
vide interactive data exploration capabilities. Built
on top of AVS, it benefits from the visual program-
ming paradigm that AVS provides. By making feed-
back from the user directly available to all modules
and by introducing a log scheme between modules,
we have been able to change AVS from a pure visu-
alization system into a data exploration system. In
this new system, users are able to interactively se-
lect pixels in windows, perform arbitrary operations
on them, and redisplay them in many different ways.
Selected pixels can be cross-linked between several
windows with different data sets and sent around the
world for telecollaboration arrangements between re-
mote colleagues. Furthermore, we provide many dif-
ferent techniques for displaying data, and for mixing
and merging data from several data sets into a single
view.

These capabilities are essential to many data ex-
ploration applications. We thus expect our system
to open up scientific visualization environments to
new classes of applications. It has already been used
to analyze color variation on wood samples, and to
investigate reflection properties on plastic objects for
computer vision research. It is an integral part of
ongoing biomedical research at our research lab, and
we have demonstrated its telecollaboration capabili-
ties on several occasions.
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