An Environment for Telecollaborative Data Exploration

Gudrun Klinker

October 28, 1993
1. Different Approaches to Visualization

- Customizability vs. Domain-Specificity
- Performance / Control flow
- Data Representations (dynamic/static)
- Data Presentations
- Explorative Capabilities
- [Collaboration]
2. Data Presentation vs. Data Representation

Observation: There are many ways (dimensions) for visualizing a data set.

- Intensity- and color- images
- Graphs and surface plots
- Icons
- Printed numbers
- Movie loops
- Sounds
- Various styles, overlaid or interleaved.

All dimensions are created equal.
An Environment for Telecollaborative Data Exploration

Data mapping:

- **Dimensions of data set**
 - cropped
 - permuted
 - lin. comb.
 - projected
 - sliced
 - merged
 \{a,b,c,\ldots,n\}

- **Presentation parameters**
 - i,r,g,b
 - x,y,z
 - t
 - shape p1,\ldots,pi
 - sound s1,\ldots,sj
 - stereo pos
 \{A,B,C,\ldots,M\}

Mapping
- rescale
- crop
- interpolate
- subsample
- wrap
- substitute

E.g.: Intensity image
- As terrainmap: \(\{x,y,i\} \rightarrow \{x,y,z\}\)
- As movieloop (x-vector): \(\{x,y,i\} \rightarrow \{x,t,i\}\)
- As movieloop (graph): \(\{x,y,i\} \rightarrow \{x,t,z\}\)
3. Data Exploration

Observation: Users don’t just look at their data. They want to
- Explore (probe) the data.
- Analyze some parts of it (ROI).
- Relate it to other measurements.

The feedback channel:
- Makes the current mouse position available to a visual program.
- Provides tools to maintain the transformations between the mouse in the window and the corresponding array index.
Feedback channel:

- Read Image
 - \{x, y\}
 - Crop Image
 - \{x- xs, y- ys\}
 - Zoom Image
 - \{(x- xs)*z, (y- ys)*z\}
 - Display Image
 - \[x', y'\]
 - Print Value
 - \[x'/z+xs, y'/z+ys\]
 - Print Value
 - \[x'/z, y'/z\]
 - Print Value
 - \[x', y'\]
Feedback channel:

- Read Image
 - \(\{x,y\} \)
 - Crop Image
 - \(\{x- xs, y- ys\} \)
 - Print Value
 - \([x/z+xs, y/z+ys] \)
- Print Value
 - \([x/z, y/z] \)
- Print Value
 - \([x', y'] \)
- Zoom Image
 - \(((x- xs)\times z, (y- ys)\times z) \)
 - Display Image
 - \([x', y'] \)
An Environment for Telecollaborative Data Exploration

Feedback channel:

- Read Image
 - \{x, y\}
- Crop Image
 - \{x- xs, y- ys\}
- Zoom Image
 - \{(x- xs)*z, (y- ys)*z\}
- Display Image
- Print Value
 - \[x'/z+xs, y'/z+ys\]
 - \[x''+xs, y''+ys\]
- Print Value
 - \[x'/z, y'/z\]
 - \[x'', y''\]
- Print Value
 - \[x', y'\]
 - \[x''*z, y''*z\]
 - \[(x''-xs)*z, (y''-ys)*z\]

- \(x'', y''\)
- \(x'', y''\)
- \(x''-xs, y''-ys\)
4. Telecollaboration

Observations:

- Every once in a while, users want to discuss the current state of their data analysis with a colleague (who may not be at the same place).
- The collaboration partners on both ends need to be able to
 - Fully participate in the analysis session.
 - Individually customize their views when desired.
 - Communicate with each other on a meaningful level of abstraction.

- Several individualizable data mapping and presentation paths.
- Linked cursors.
- Window migration.
Example

Tele-collaborative analysis of multispectral data.
Tele-collaborative multi-spectral data analysis in TDE (AVS)