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ABSTRACT

Computer aided diagnosis is often confronted with processing and analyzing high dimensional data. One 
alternative to deal with such data is dimensionality reduction. This chapter focuses on manifold learning 
methods to create low dimensional data representations adapted to a given application. From pairwise 
non-linear relations between neighboring data-points, manifold learning algorithms first approximate 
the low dimensional manifold where data lives with a graph; then, they find a non-linear map to embed 
this graph into a low dimensional space. Since the explicit pairwise relations and the neighborhood 
system can be designed according to the application, manifold learning methods are very flexible and 
allow easy incorporation of domain knowledge. The authors describe different assumptions and design 
elements that are crucial to building successful low dimensional data representations with manifold 
learning for a variety of applications. In particular, they discuss examples for visualization, clustering, 
classification, registration, and human-motion modeling.
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INTRODUCTION

Computer-aided diagnosis often implies pro-
cessing large and high dimensional datasets, for 
instance, high-resolution volumes containing mil-
lions of voxels, or 4D videos collecting motion 
information over time. Visualization and analysis 
of such data can be very time demanding for physi-
cians but also very computationally expensive for 
machines assisting diagnosis tasks. Fortunately, 
in many cases the relevant information for an ap-
plication can be represented in lower dimensional 
spaces. If appropriately chosen and designed, 
dimensionality reduction methods will not only 
decrease the processing time but also facilitate 
any posterior analysis. Therefore, they can be of 
great use to a variety of CAD (Computer Aided 
Diagnosis) applications, ranging from general 
problems such as classification and visualization, 
to more specific ones like multi-modal registra-
tion or motion compensation. Up to recent years, 
dimensionality reduction in CAD has relied mainly 
on linear methods, such as Principal Component 
Analysis (PCA). Linear methods are however 
not suitable for handling non-linear complex re-
lationships among the data samples. Non-linear 
approaches based on manifold learning are a good 
alternative for dimensionality reduction in such 
cases (Lin & Zha, 2008; Pless & Souvenir, 2009).

Established manifold learning methods like 
Isomap (Tenenbaum, et al., 2000), Locally Linear 
Embedding (LLE) (Roweis & Saul, 2000) or La-
placian Eigenmaps (Belkin & Nigoyi, 2003) are 
widely used in different scientific communities 
for data representation, dimensionality reduction, 
visualization, and clustering. The name “mani-
fold” learning comes from the assumption that 
data-points represented in a high dimensional 
space lie on a low dimensional manifold; it is this 
manifold that the different algorithms try to ap-
proximate and represent. Several properties make 
manifold learning approaches very attractive, for 
example, flexibility, simplicity, their capability 
to account for non-linear data relations and their 

closed form solution. The flexibility is a result of 
representing the data points not by their coordi-
nates in the high dimensional space, but instead by 
means of relational functions between pairs of data 
points. These pairwise relations are determined 
in terms of customized similarity measures and 
can be non-linear functions. The core of manifold 
learning algorithms is independent of these mea-
sures, handing to the designer the responsibility 
of determining the right similarities to capture 
the appropriate manifold structure. Properties 
of manifold learning such as the flexibility and 
non-linearity are relevant to computer aided 
diagnosis, given that medical datasets tend to be 
high dimensional and often represent complex 
non-linear phenomena. Moreover, many medical 
datasets often verify the assumption that the data 
lies close to a manifold structure. For instance, 
the contiguous frames of a video or the slices of 
a volume vary smoothly; also, the continuous 
deformation of an organ’s shape over time can 
be considered to form a manifold; finally, the 
variations of an organ over a population can also 
be expected to lie on a manifold. These facts have 
recently raised interest in using manifold learning 
methods for a variety of applications, including 
visualization, clustering, classification, statistical 
shape analysis, registration, and segmentation.

A direct application of manifold learning is 
visualization. (Lim, et al., 2003) presented an early 
work applying manifold learning for visualizing 
biomedical data, where differences between bone 
structures were displayed in 2D by means of Iso-
map. Several gene expression studies (Nilsson, et 
al., 2004; Bartenhagen, et al., 2010) also rely on 
manifold learning for visualization of microarray 
data. Visualization of cardiac Magnetic Resonance 
(MR) images using Isomap was explored in (Sou-
venir and Pless, 2007), where images in the same 
breathing phase were displayed as nearby points 
in the low dimensional space.

Using appropriate non-linear similarity 
functions and neighborhood systems, manifold 
learning can be designed to map complex cluster 
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patterns in the high dimensional space to simpler 
representations in a low dimensional space. Clus-
tering in the reduced space is more efficient and 
usually performed with simple algorithms such 
as K-means. This property has also been explored 
for clustering biomedical data (Finn, et al., 2009; 
Atasoy, et al., 2010). (Finn, et al., 2009) show that 
a better visualization of high dimensional flow 
cytometry data is achieved when using a statistical 
manifold learning method, instead of the conven-
tional linear projections. Phenotype patterns of 
leukemia that are challenging to distinguish by 
experts are easily clustered in the computed low 
dimensional embedding space. Another example 
of manifold learning applied to clustering was 
presented in (Atasoy, et al., 2010), where images 
of an endoscopic video, which reside in a high 
dimensional space, can be visualized and analyzed 
in a dimensionality-reduced space after learning 
the manifold. Such a representation is suitable for 
faster navigation and also for clustering similar 
scenes or similar imaging conditions.

The training of classifiers in the reduced space 
can also take advantage of the clustering property 
of manifold learning, as it is expected that non-
linearly separable classes are better separated in 
the low dimensional representation. Therefore, 
manifold learning has also been used for clas-
sification of biomedical data (Wachinger, et al., 
2010a; Lee, et al., 2008; Susuki et al, 2010; Sparks 
& Madabhushi, 2010). (Wachinger, et al., 2010a) 
model the automatic patient position detection in 
MRI scanners as a classification problem. Lapla-
cian Eigenmaps on low-resolution slices and a 
nearest-neighbors classifier are used to classify 
the position the new slices into body-parts. (Lee, et 
al., 2008) compare different linear and non-linear 
methods for dimensionality reduction applied to 
the classification of gene and protein expression. 
Cluster quality measures and the discriminant 
power of two supervised classifiers, namely Sup-
port Vector Machines (SVM) and decision trees, 
are used for the evaluation. (Suzuki, et al., 2010) 
address the detection of suspicious polyps in a 

Computed Tomography Colonography (CTC) 
with a method that combines a non-linear dimen-
sionality reduction method and Massive-Training 
Artificial Neural Networks (MTANN). The reduc-
tion method is inspired by the Laplacian eigenfunc-
tions (Belkin & Nigogyi, 2003) and relates to the 
Locality Preserving Projections algorithm (He, et 
al., 2005). The input to the method is the set of 
pairwise relations between sub-volumes of the 
CTC. The resultant low dimensional representa-
tion improves the time-consuming training stage 
of the MTANN. Finally, (Sparks & Madabhushi, 
2010) reduce the dimensionality of morphological 
features by computing diffeomorphic similarities 
and using Laplacian Eigenmaps. The low dimen-
sional representations are used in conjunction 
with a Support Vector Machine (SVM) to classify 
different grades of prostate cancer, and to differ-
entiate between benign vs. malignant lesions of 
breast in DCE-MRI images.

More sophisticated classification schemes have 
also been explored. For instance, (Tiwari, et al., 
2010) combine the power of multi-kernel learn-
ing with graph embedding (manifold learning) 
techniques to create a common representation 
that fuses multi-modal information from MRI 
and Spectroscopy. The method uses addition-
ally partial supervision of labels (thus is a semi-
supervised technique) to propagate labels and to 
discriminate benign from cancerous tissue and 
different grades of aggressive prostate cancer. For 
the same application, (Tiwari, et al., 2009) had 
previously investigated the use of spectral embed-
ding in combination with probabilistic boosting 
trees. Also in (Tiwari, et al., 2008) a modified 
version of LLE to classify only the MRI images 
was proposed.

Manifold learning methods have also been used 
for population studies and statistical analysis of the 
brain under various imaging modalities (Verma, 
et al., 2007; Gerber, et al., 2010; Aljabar, et al., 
2008; Aljabar, et al., 2010). (Verma, et al., 2007), 
rely on Isomap for creating a low dimensional 
representation of Diffusion Tensor MRI (DT-MRI) 
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of the brain. Diffusion tensors call for non-linear 
dimensional reduction methods, as they inherently 
lie on a non-linear sub-manifold of the R6 space, 
and given that plausible images are restricted by 
the structure of the brain. Isomap captures the 
manifold structure of the tensor images and embeds 
it into a linear space where it is easier to compute 
statistical measures and perform statistical tests. 
Following a similar reasoning, (Gerber, et al., 
2010) argue that the space spanned by a set of 
MRI brain images can be approximated by a low-
dimensional non-linear manifold. Relying on this 
assumption, Isomap is applied on brain databases 
containing T1-weighted MRI images acquired 
from Alzheimer patients and controls. An ap-
proximation to the diffeomorphic metric for small 
deformations is used for the pairwise similarities. 
The recovered manifold shows correlations to 
clinical parameters such as age, mini-mental-state 
examination and clinical dementia rating. The 
low dimensional representation is combined with 
regression to create mappings relating the reduced 
to the original space. Such a generative model is 
useful for retrieving brains with similar shapes 
and for creating priors and atlases. A related work 
(Aljabar, et al., 2008), addresses the diagnosis of 
dementia of brains according to morphological 
analysis of neuro-anatomical structures. Based 
on pairwise image similarities derived from the 
structural segmentation overlap, Laplacian Ei-
genmaps is used to discriminate clinical groups 
of elderly patients with Alzheimer’s disease and 
controls. Later, (Aljabar, et al., 2010) investigate 
the use of multiple measures (of shape and ap-
pearance) to learn manifolds, and the combination 
of Laplacian Eigenmaps and Isomap into a single 
population representation. The method has been 
applied to neonatal brain MRI leading to a low 
dimensional representation that correlates well 
with clinical data and to morphological features. 
The representation can also be used to characterize 
the trajectories of brain development.

The analysis of organ deformation is an im-
portant medical application of manifold learning. 

Images of organs under deformations produced 
by breathing, the heart beating, or similar defor-
mations are clear examples of low dimensional 
data residing in high dimensional spaces. Low 
dimensional representations that learn the mani-
fold of deformations can be used for segmentation 
(Zhang, et al., 2006; Etyngier et al. 2007; Kadoury 
& Paragios, 2010), reconstruction (Georg, et al., 
2008, Wachinger, et al., 2010d) and registration 
(Hamm et al, 2010, Wolz, et al., 2010).

An application of learning deformation mani-
folds for segmentation was presented in (Zhang, et 
al., 2006), addressing the analysis of cardiopulmo-
nary MR images for left-ventricle segmentation. 
Isomap is used to characterize the manifold of 
shapes of ungated, free-breathing cardiac MRI 
data. The method incorporates domain-specific 
constraints from the learnt manifold in a level-set 
segmentation algorithm, which behave better than 
the usual smoothness constraints. To learn the 
manifold, the pairwise similarities are computed 
from the phase difference of local Gabor filters. 
Resultant low dimensional coordinates of the 
manifold can be identified with changes in the 
breathing and the heartbeat phases. With a similar 
approach, (Etyngier et al. 2007) proposed to use 
manifold learning to create non-linear deformable 
shape priors of ventricle nuclei images. Authors 
employ the diffusion maps method (Lafon & 
Lee, 2006; Nadler, et al., 2006) to create a low 
dimensional representation, which serves as a 
non-linear shape prior attracting the shape to the 
manifold within a variational segmentation ap-
proach. The Nyström extension (Bengio, et al., 
2003) is used to map new shapes to the manifold. 
In a recent work, (Kadoury & Paragios, 2010) 
address the segmentation of spinal column from 
CT data based on learning the manifold of shape 
variations of the spine. A metric is introduced 
that handles both small and large deformations. 
The dimensionality-reduced representation is 
used as a prior within a Markov Random Field 
(MRF) inference framework that balances the 
prior distribution with image data. Finally, in 
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(Wolz, et al., 2010), manifold learning is used for 
segmentation based on label propagation. A small 
number of manually labeled MRI brain atlases 
are progressively propagated to a large dataset 
of unlabeled images, starting from the atlas im-
ages to their neighbors until the entire dataset is 
segmented. The low dimensional representation 
is used to identify neighboring images in each 
propagation step, such that instead of register-
ing very different images, a succession of local 
deformations between similar images is used for 
the propagation.

Manifold learning can be useful for recon-
struction of deforming organs from ungated 
images. (Wachinger, et al., 2010d) propose an 
image-based gating using Laplacian Eigenmaps. 
The low dimensional representation allows for 
identification of similar images, which are then 
used for reconstructing 4D ultrasound data from 
abdominal images affected by breathing motion. 
(Georg, et al., 2008) use manifold learning for 
building 4D reconstructions of the lung from CT 
images affected by cardiac and breathing motion. 
The low dimensional representation created with 
Isomap is used to determine an initial estimate of 
the pose of the current image sample in the space 
of deformation parameters. These parameters are 
related to the breathing and heartbeat phases. Pose 
estimation is then integrated within an optimiza-
tion framework that iteratively reconstructs a static 
volume while updating the estimate of the poses 
in the low dimensional space.

In the case of registration, manifolds built 
based on distances computed from the deforma-
tions between two instances of a shape were used 
in (Hamm et al., 2010). The manifold can then be 
employed for registering pairs of shapes with large 
deformations by finding the path on the manifold 
and composing a global deformation from this 
path. This idea is similar to the one of (Wolz, et 
al., 2010) for segmentation. Finally, (Wachinger & 
Navab, 2010c) propose a different way of applying 
manifold learning to the multi-modal registration 
problem. This work relies on the principle that two 

images of the same organ acquired with different 
modalities have almost identical intrinsic (self) 
similarities. Structural representations capturing 
these self-similarites are computed using Lapla-
cian Eigenmaps independently on each image. The 
resultant representations can be then registered 
with mono-modal methods.

A last application considered here is the 
analysis of human motion (Schwarz, et al., 2009; 
Schwarz, et al., 2010) applied to diagnosis of neu-
rological diseases. The method relies on manifold 
learning to create a series of low dimensional rep-
resentations of activities of interest from motion 
capture data. Patients can then be equipped with 
a reduced number of portable inertial sensors that 
enable long-term analysis. During the test stage, 
the learnt motion models are used to detect the 
current activity and give an estimate of the pose (in 
terms of joint angles) only from the inertial sensor 
observations. As in (Kadoury & Paragios, 2010), 
the low dimensional representations are used to 
constrain the search space in the optimization. 
Also, similar to (Gerber, et al., 2010), mappings are 
learnt that relate the low and the high dimensional 
spaces to complete a generative model.

Chapter Organization: In the first part of the 
chapter we discuss the basic principles of mani-
fold learning and recall the Laplacian Eigenmaps 
algorithm (Belkin & Nigoyi, 2003). A second part 
presents case studies from recent state of the art 
methods, where manifold learning is used for:

• Patient position detection by classification 
of full-body MRI slices (Wachinger, et al., 
2010a).

• Visualization and clustering of endoscopic 
videos (Atasoy, et al., 2010).

• Multi-modal registration (Wachinger & 
Navab, 2010b).

• Image-based gating for 4D ultrasound re-
construction (Wachinger, et al., 2010d).

• Human Motion analysis (Schwarz, et al., 
2010).
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The parallel of these applications illustrates 
how to design the key elements of Laplacian 
Eigenmaps, namely the similarity measures and 
the neighborhood system, according to the appli-
cation, and how to include domain knowledge in 
the dimensionality reduction process.

BACKGROUND: MANIFOLD 
LEARNING

C o n s i d e r  a  d a t a s e t  o f  N  p o i n t s 
X x x x

N
= { , , , },

1 2
     w i t h 

x
i

D i N∈ ∀ ∈R    { , , },1   the goal dimension-
ality reduction is to find the best low dimen-
sional representation Y = { , , , },y y y

1 2
   

N
 

where y
i

dÎ R  andd D<< ,  that preserves the 
relevant information of X. The most common 
method to reduce the dimensionality is by means 
of Principal Component Analysis (PCA). After 
centering the data and stacking the points in a 
matrix X x x x= [ , , , ] ,

1 2
   

N
T  PCA recovers a 

linear transformation T that projects each point 
xi, to a new coordinate system of smaller dimen-
sion, that is, T x y: .

i
D

i
d∈ → ∈R R  The trans-

formation is found from the eigenvectors of the 
covariance matrix XTX. PCA is a very general 
method as the only assumptions made are that T 
is a linear transformation, and that the low dimen-
sional representation should preserve as much as 
possible the data variance. If it is more important 
to preserve the distances between points than their 
variance, then the also linear Multi-Dimensional 
Scaling (MDS) approach (Cox & Cox, 2001) 
reveals to be more appropriate. In MDS, the 
transformation is explicitly found by optimizing 
the distance preservation criteria. Notice that if 
the distances considered in MDS are Euclidean, 
the two approaches are equivalent.

Dimensionality reduction methods based on 
linear transformations are easy to compute and 
have the advantage of providing the transforma-

tion to project new incoming data-points into the 
reduced space. However, they are not capable of 
capturing complex non-linear relations among the 
data points. An academic example illustrating this 
problem is the Swiss-roll dataset (Roweis & Saul, 
2000), a 2D manifold embedded in a 3D space. 
Linear methods fail to unfold the manifold. The 
Swiss-roll example can be related to image data-
sets. Individually each image is defined as a point 
in a high dimensional space (the dimension cor-
responding to the size of the image), however the 
set of images of interest (e.g. showing the changes 
of an organ under deformation due to breathing) 
lies in a sub-manifold of the image space and can 
be represented in a significantly lower dimensional 
space (e.g. a two dimensional space whose coor-
dinates relate to the breathing motion). In such 
cases manifold learning approaches provide an 
alternative to approximate the manifold where data 
lives and “unfold” it to a low-dimensional space. 
Although other non-linear approaches (Sammon, 
1969; Lawrence, 2005) exist, manifold learning 
methods are specifically designed for cases where 
the data follows the structure of a manifold. This 
manifold assumption states that data points are 
sampled from a low dimensional manifold living 
in a high dimensional space. This implies first, that 
the data should be indeed low dimensional, and 
second, that the data points change smoothly and 
continuously in the low dimensional space where 
they live, describing a metric that is locally linear.

In practice, the actual metric on the mani-
fold is unknown and only a discrete set of data 
samples is available, so the actual manifold can 
only be approximated. Instead of considering 
data points individually, manifold learning tries 
to approximate the manifold locally by taking 
into account pairwise relations between the data 
points. The methods leave the design of these 
pairwise relations open to the user, such that they 
capture the relevant information for an applica-
tion. When the manifold assumption is verified 
and a sufficient number of regularly sampled data 
points is available, manifold learning methods are 
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able to approximate the manifold and compute a 
meaningful low dimensional representation of 
the data samples.

A large variety of manifold learning methods 
exist. Examples are Isomap (Tenenbaum, et al., 
2000), Locally Linear Embedding (Roweis & 
Saul, 2000), Laplacian Eigenmaps (Belkin & 
Nigoyi, 2003), Diffusion maps (Lafon & Lee, 
2006; Nadler, et al., 2006) and Hessian Eigenmaps 
(Donoho & Grimes, 2003). A link of some of these 
algorithms to kernel methods, and in particular to 
Kernel PCA (Schölkopf, 1998), was established 
(Bengio, et al., 2004). Other methods and relations 
between them may be found in recent surveys 
(Lin & Zha, 2008, Pless & Souvenir, 2009; van 
der Maaten, et al., 2009) as well as in the further 
readings section.

The input to manifold learning methods is the 
dataset of N points X = { , , , }x x x

1 2
   

N
 con-

sidered to be samples of a manifold M living in a 
space of high dimensionality RD. The goal is to 
find a non-linear function φ that maps the data 
samples X to a lower dimensional space ( ) :d D<<

j : .x y∈ ⊂ → ∈M R RD d  

The problem of finding φ is highly uncon-
strained, so most methods do not explicitly find 
φ. Instead, only the low-dimensional coordinates 
of the mapped points Y = { , , , }y y y

1 2
   

N
 are 

recovered. The main differentiating feature among 
the aforementioned methods is the way to derive 
and constrain the mapping function.

In the following, we recall the Laplacian 
Eigenmaps method, introduced by Belkin and 
Nigoyi (2003), as an exemplary approach with 
an interesting mathematical derivation. Subse-
quently, we explore the capabilities of Laplacian 
Eigenmaps for different applications.

Laplacian Eigenmaps

To find the low dimensional representation of 
points X = { , , , },x x x

1 2
   

N
 Laplacian Ei-

genmaps minimizes a cost function that enforces 
the preservation of the point’s neighborhood 
structure, imposing data points that are neighbors 
in the original space to remain close after the 
mapping. The optimization is stated as finding 
the corresponding coordinates of the points
y
i
ÎY  in a d-dimensional space:

arg min , { , ... , },
~y R x x

y y
i

d
i j

w i j N
ij i j

∈

− ∀ ∈∑
2

1       

where xi~xj denotes xi and xj are neighbors, || || 
is the L2 norm, and wij are user defined weights 
usually giving higher penalties to pairs of points 
that are closer. To find a close form solution, the 
cost is reformulated in a matrix form that leads to 
an eigenvalue problem. First, the sum of squares 
is split as seen in Exhibit 1.

Let us define dii as the sum of the weights from 
a point xi to its neighborsd w

ii ij
i j

=∑ x x~
,  and 

consider w
ij
= 0  for non-neighboring points. 

Then, the first term is equivalent to Exhibit 2, and 
the cost can be rewritten as Exhibit 3.

w w w w
ij i j ij i ij j ij i j

i j i j i j i j

y y y y y y
x x x x x x x x

− = + −∑ ∑ ∑ ∑
2 2 2

2
~ ~ ~ ~

.T  

Exhibit 1.
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Let D be aN N´ diagonal matrix with entries 
dii and W the N N´ symmetric matrix containing 
weights wij. Then, define Y as theN d´ matrix 
containing in each row the sought low dimen-
sional coordinates Y y y y= [ , , , ]

1 2
   

N
T  and 

denote each dimension of Y, with a superscripted 
y(l), l dÎ { , ... , },1     such that matrix Y can also 
be written as Y y y y= [ , , , ]( ) ( ) ( )1 2   

d . Using 
the relation1 w

ij i j
i j

y y Y WY
x x

T T
~

trace( ),∑ =  

the cost function in matrix form is expressed as:

w
ij i j

i j

y y Y DY Y WY
x x

− = −∑
2

2
~

trace( ).T T  

Finally, let us define the positive semi-definite 
Laplacian matrix L=D-W. The optimization 
becomes:

arg min trace( ) ( )    s.t.      and   
Y R

Y LY Y DY I y D1 0
∈ ×

= =
N d

kT T T ,,  

where the first constraint enforces the orthogo-
nality between the different dimensions of the 
low dimensional representation and removes the 
arbitrary scaling factor, preventing the solution to 
collapse to a sub-space of lower dimension than 
d. The second constraint ensures the translation 
invariance. The sought low dimensional coor-
dinates of the points Y correspond to the first d 

eigenvectors associated to the smallest non-zero 
eigenvalues, solution to the generalized eigen-
value problem Lv = λDv. Given L is sparse this 
eigen-decomposition is computationally efficient.

In practice, the Laplacian Eigenmaps algorithm 
consists of the following steps:

1.  Define a pairwise similarity measure be-
tween elements of X (that determines the 
weights wij).

2.  Define a neighborhood system (xi~xj).
3.  Build matrix W from steps 1 and 2, using 

wij=0 for non-neighboring points.
4.  Compute the Laplacian matrix L=D-W.
5.  Solve the generalized eigenvalue problem 

Lv = λDv (i.e. find the eigenvectors v(l) cor-
responding to the d smallest non-zero eigen-
values λ(l), with l dÎ { , ... }1   , ).

6.  The l-th eigenvectors contains the l-th co-
ordinates of the points in the low dimensional 
space, y v( ) ( ),l l=  and Y=[v(1), …, v(d)]. As 
a result, every point x x R

i i
DÎ ÎX , ,  is 

mapped to a low dimensional representation 
y y R
i i
Î ÎY , d ,  with

 y
i i i i

dv v y= [ , , ... ]( ) ( ) ( )1 2   , T  and v
i
l( )

 denoting the i-th element of the l-th eigen-
vector v(l).

w w w d
ij i ij i i ij i ii

i j ji ji i

y y y y
x x xx xx x

2 2 2 2

~

,∑ ∑∑ ∑∑ ∑= = =  

w d d w
ij i j ii i jj j ij i j

i j i j i j

y y y y y y
x x x x x x

− = + −∑ ∑ ∑ ∑
2 2 2

2
~ ~

.T  

Exhibit 2.

Exhibit 3.
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The most common way to define the weights 
is to use a Gaussian kernel based on dissimilarity 
between data points:

w
ij

i j=
−










exp

diss( , )
,

x x

s
 

with σ a parameter. Values for σ can be estimated 
from the standard deviation of the pairwise dis-
similarities diss( , ).x x

i j
 For building the neigh-

borhood, k-nearest neighbors (k-nn) or ε-ball 
neighborhood systems are common choices. In 
k-nn, a distance or dissimilarity function (e.g. 
diss( , )x x

i j
) is used from each point xi to all 

other points in the set X, the k points that are the 
closest to xi are then chosen to be xi’s neighbors. 
In the ε-ball system, all the points in X that lie 
within a distance (or dissimilarity) of ε to xi are 
its neighbors, e.g. xi~xj if diss( , ) .x x

i j
< e

The Laplacian Eigenmaps method receives its 
name from graph theory, as it models the dimen-
sionality reduction problem as the non-linear 
embedding of graph into a space of a low dimen-
sion. Consider a weighted graph with each vertex 
representing one of the data-samples x

i
DÎ R ,  

and weighted edges between neighboring nodes 
xi~xj. The matrix W containing the weights wij 
defines the weighted adjacency matrix of the 
graph, while the dii values measure the connectiv-
ity of each vertex and give to matrix D the name 
of degree matrix. Finally, the matrix L plays the 
role of an operator on functions defined on the 
vertices of the graph, and can be thought of as the 
discrete equivalent of the continuous Laplace-
Beltrami operator (Elmoataz, et al., 2008), from 
where the “Laplacian” term comes from. Notice 
the definition of L=D-W is only one possibility 
among other discretizations of the Laplace-Bel-
trami operator (Hein, et al., 2007).

From the graph embedding point of view, the 
graph created from the samples in X is an ap-
proximation of the manifold M. Thus, the success 

of finding a meaningful low dimensional repre-
sentation depends on the data points reasonably 
sampling the manifold, and on the definition of 
appropriate neighborhood systems and weights 
according to domain knowledge.

DESIGNING MANIFOLD 
LEARNING METHODS FOR 
MEDICAL APPLICATIONS

In this section we discuss a series of applications 
for which a solution involving manifold learning, 
and in particular the Laplacian Eigenmaps, has 
been proposed.

Patient Position Detection 
by Classification of Full-
Body MRI Slices

Although Magnetic Resonance Imaging (MRI) 
does not require ionizing radiation, the applied 
radio frequency power produces heating. The 
amount of heating depends on the body part be-
ing imaged. (Wachinger, et al., 2010a) propose to 
detect the currently observed body part to allow 
better monitoring of the absorbed power as well 
as the optimization of the image acquisition. To 
preserve the MRI acquisition protocol, authors 
use a sequence of low-resolution images acquired 
during the initial placement of the patient in the 
scanner. During this acquisition, the bed moves 
with a relatively high but constant speed, which 
results in low-resolution slices (~64×64 pixels) 
with a slice spacing of 7.5 mm to 15 mm (see 
coronal a view in Figure 1). The detection of the 
patient position is modeled as the classification of 
the current slice into one of the specified regions 
of the body, e.g. head, abdomen, etc. The proposed 
solution uses Laplacian Eigenmaps during a train-
ing phase to create a low dimensional representa-
tion of the whole-body low-resolution slices. In 
the test phase, a simple classifier is deployed in 
the low dimensional representation to assign the 
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region of the body to a new acquired slice. Due to 
the controlled motion of the patient, the content 
of the slices varies smoothly and thus complies 
with the conditions for manifold learning.

Prior to classification, a low dimensional 
representation from N available low-resolution 
slices is built using Laplacian Eigenmaps. A graph 
is constructed with nodes representing the im-
ages {I1, I2, …, IN} and edges determined with a 
k-nn system (k=40). To compute the graph’s edge 
weights, images are first normalized and con-
verted to vectors. Additionally, a descriptor Ji

T  
is defined for each slice Ii collecting the 2s+1 
contiguous slices, J I I Ii

T T T T= − +[ , .. , , .. , ].
i s i i s

 .    .    
The descriptor captures the volumetric context of 
Ii. Finally, the weights are computed with a Gauss-

ian kernel based on the L2 norm between pairs 
of slice descriptors:

diss ( , ) .
MRI i j i j

J J J J= −
2

 

The combination of the volumetric slice de-
scriptors with the simple choices of weights and 
neighborhood system lead to low-dimensional 
representations that are appropriated for the clas-
sification of the slices.

The behavior of different (2D) representations 
obtained with Laplacian Eigenmaps, Isomap and 
PCA, using the normalization and the slice volu-
metric descriptors is illustrated in Figure 1, with 
different markers showing the ground-truth clas-
sification. Classification in the low dimensional 

Figure 1. (Top) 2D representations obtained with Laplacian Eigenmaps, Isomap and PCA, using the 
normalization and the slice volumetric descriptors. Different markers show the ground-truth classifica-
tion of the MRI slices. (Middle) A coronal view of the low resolution MRI slices. (Bottom) Quantitative 
Validation of the classification of MRI slices for patient position detection.
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space produced by PCA is difficult. Isomap keeps 
the different classes grouped, but boundaries are 
not well defined. Laplacian Eigenmaps reflects 
most faithfully the continuous change from the 
head to the feet of the slices.

Quantitative classification results using a 
simple nearest-neighbor classifier also favor 
Laplacian Eigenmaps over PCA and Isomap, as 
tables in Figure 1 show. 13 whole body datasets 
were acquired. Manual labeling under supervision 
of a medical expert assigned each slice to one of 
6 classes: head, neck, lung, abdomen, upper leg, 
and lower leg. A cross-validation with a leave-
one-out strategy was performed.

From the tables in Figure 1 we see that dimen-
sionality reduction with Laplacian Eigenmaps 
significantly facilitates classification leading 
to the highest overall correct classification rate 
of 94.0% (Compared to 93.3% for Isomap and 
80.0% for PCA). Results also show that domain 
knowledge integrated in the form of image nor-
malization and volumetric slices improves the 
classification results.

Visualization and Clustering 
of Endoscopic Videos

Cancer monitoring in Gastrointestinal Endoscopic 
(GI) videos involves long inspection of the video 
frames by an expert. Low dimensional repre-
sentations of the endoscopic videos based on a 
manifold learning can facilitate the visualization 
of the videos and assist the expert. (Atasoy, et al., 
2010) describe the adaptation of the Laplacian 
Eigenmaps for three tasks:

• Clustering of good and uninformative 
frames,

• Clustering of similar scenes,
• Video segmentation for summarization.

The approach followed in the three cases 
consists of first, creating an Endoscopic Video 
Manifold (EVM) by embedding the GI video in 

a low dimensional space using Laplacian Eigen-
maps; and second, deploying a K-means algorithm 
find clusters in the embedding space.

The first application of EVMs is the clustering 
of good and uninformative frames. Uninformative 
frames arise from motion or out-of-focus blur, 
specular highlights, and artifacts caused by turbid 
fluid in the GI. Example of such frames can be 
seen in Figure 2-a. As it is difficult to systemati-
cally detect these frames and it is not admissible 
to remove frames from the video, (Atasoy, et al., 
2010) propose to cluster them. Because cluster-
ing is unsupervised, no prior labeling of example 
frames is required, while the particularities of each 
video (e.g. the patient, the optics, the modality) 
are automatically taken into account. To capture 
the difference between good and uninformative 
frames in the design of the Laplacian Eigenmaps 
graph, authors rely on the power spectrum of 
the images. Intuitively, good quality images are 
sharp and have large amounts of high-frequency 
content. In contrast, the content of blurred images 
and images with fluid remains usually in the low 
frequencies. Therefore, authors propose to use the 
difference between the power spectrum of pairs 
of images to define the graph weights.

Formally, consider a video is a set of N im-
ages {I1, …, Ii, …, IN}, with I R

i
DÎ .  First, we 

compute the power spectrum of each frame Ii 
using a discrete Fourier transform and log-polar 
coordinates. This results in a power spectrum
F
i
f( , ),q  defined for a discrete set of frequencies 

f f f fÎ { , , , }
max1 2

  a n d  o r i e n t a t i o n s 
q q q q= { , , , }.

max1 2
  In order to make the image 

representation independent of its orientation au-
thors compute a rotation-invariant power spec-
trum; first, summing the contributions of all 
o r i e n t a t i o n s  t o  e a c h  f r e q u e n c y, 
F Fi i( ) ( , ),f f=∑ q

q
 and then, creating an En-

ergy Histogram (EH) with B bins (B=30 in the 
experiments) 
h
i i i i

B
i

h h h f B= = ( )[ , , , ] hist ( ), .1 2
 F   Finally, 

the weights are computed with:
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ij EH i j

i j
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Authors also investigate the use of an intensity-
based similarity, the Normalized Cross-Correla-
tion (NCC):

w w
ij NCC i j i j
= =( , ) ncc( , ).I I I I  

Resultant low dimensional representations 
(EVMs) of the video using wEH and a k-nn system 
are shown in Figure 2-(b,d) for two videos; the 
ground truth uninformative frames are overlayed. 
The clusters obtained with K-means on the EVMs 
are shown in Figure 2-(c,e). Note the separation 
of the uninformative frames in the EVMs and 

Figure 2. Clustering of non-informative frames using the low dimensional representation of a Gastro-
Intestinal (GI) endoscopic video. (a) Examples of non-informative frames. (b-e) 3D representations 
obtained with Laplacian Eigenmaps and the wEH weights. (d) Quantitative evaluation of the clusters.
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the cluster correlation with the ground truth. For 
quantitative evaluation, clusters that contain more 
than 50% of uninformative frames are labeled 
as uninformative and K is varied from 1 to 80. 
Results of best precision and recall are shown in 
Figure 2-f.

(Atasoy, et al., 2010) also consider assisting 
endoscopic video examinations by clustering 
frames of the same scene, or by segmenting the 
video for summarization. In the first case, authors 
generate the EVMs using Laplacian Eigenmaps 
with k-nn and wNCC. In the second, the approach 
is adapted to create segments by detecting big 
changes in the imaging conditions of the video. 
Ordinary changes are produced by the motion 
of the camera (endoscope) and are smooth. The 
smoothness of camera motion field is measured 
by computing the divergence of the optical flow. 
If the optical flow field V(Ii, Ij) from frame Ii to 
frame Ij is smooth, then the divergence at each 
location will be close to zero leading to a high 
similarity. Additionally, the measure leads to 
high similarity only if the scene and the imaging 
conditions (blur, specular highlights) are the same. 
The flow divergence contributions are summed up 
over the image to define the divergence of optical 
flow fields (doff):

doff( , ) ( , ),I I V I I
i j x i j

x

D

= ∇ ⋅
=
∑

1

 

where ∇ ⋅  is the divergence operator. Finally, the 
similarity is computed as:

w w
ij i j

i j

i j

= = −










DOFF
( , )

doff( , )

maxdoff( , )
I I

I I

I I
1 ..  

In the case of the optical flow similarities, 
the k-nn of a frame Ii are searched only within a 
temporal window around Ii. The method of Black 

and Anandan (Black & Anandan, 1993) is used 
to compute the optical flow.

Results of the EVMs created with wNCC and 
wDOFF and K-means clustering for one video are 
shown in Figure 3-(a,b). Only the EVM of the 
largest connected component is shown. The first, 
mean and last frames of each cluster are shown 
in the rows of Figure 3-(c,d). The wNCC similarity 
leads to clusters of similar scenes, independent of 
whether they are temporally close. They can be 
used to match videos of the same patient taken 
at different times. Results using wDOFF and the 
temporally constrained neighborhoods are rather 
suitable for video summarizing.

Multi-Modal Registration

Multi-modal registration consists in finding a 
map between images of the same scene acquired 
with different imaging modalities. The standard 
approach to multi-modal registration is to use 
sophisticated similarity metrics such as mutual 
information to compare the images. An alternative 
approach is to create structural representations of 
the images (Wachinger & Navab, 2010b). These 
representations are built to capture structure shared 
by the two images, and thus can be registered as 
mono-modal images using the L1 or L2 norm. 
This avoids the need of considering the intensity 
transformations. As a result, direct application of 
L1 and L2 norm suffices to align the structural 
images. In (Wachinger & Navab, 2010b), struc-
tural representations are created using Laplacian 
Eigenmaps as explained bellow.

Good structural representations are similar 
across modalities. This requirement is verified 
when the intrinsic similarities are comparable 
(i.e. if a pair of patches is [intrinsically] similar 
in one image, the corresponding pair of patches 
in the second image should also be [intrinsi-
cally] similar). The problem reduces to finding 
a representation that preserves local (similar) 
relationships. As this is exactly what Laplacian 
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Eigenmaps optimizes for, the algorithm is suitable 
for creating structural representations.

A structural representation is modeled as the 
result of a map f that takes a pixel x from image 
I RÎ D ,  where x DÎ { , , },1  and maps it to a 
descriptor y R

x
dÎ .  The descriptor captures the 

structural information of a patch p I
x
Ì  around 

x, that is, f
x x

d: .p y R→ ∈  An ideal structural 
representation should exhibit the following prop-
erties:

Locality Preservation: two similar patches 
in the same image p p I

i j
, Ì  should be mapped 

to similar structural descriptors:

p p p p
i j i j

f f− ≤ ⇒ − ≤g g      ( ) ( ) ',  

where both γ and γ’ are small numbers. This 
property is important for both the robustness to 
noise and the capture range of the registration.

Structural Equivalence: A pair of descriptors 
obtained for patches from different modalities 
(1,2), p I

a
Î

1
 and p I

b
Î

2
,  is considered to be 

structurally equivalent if and only if:

f f
a b1 2

( ) ( ),p p=  

where f1 and f2 are the maps associated to modali-
ties 1 and 2, respectively. This enforces the de-
sired representation for multi-modal registration, 
improves the discrimination, and avoids trivial 
solutions such as mappings to constant values.

Theoretically, the embedding obtained with 
Laplacian Eigenmaps gives an optimal approxi-
mation to the locality preservation criteria for an 

Figure 3. Clustering scenes and segmentation of GI endoscopic videos based on intensity and flow-based 
similarities and Laplacian Eigenmaps
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ideal structural description. Indeed, Laplacian 
Eigenmaps searches for similar patches in the 
high dimensional patch space and embeds them 
in a low dimensional by imposing the preservation 
of locality. For each modality, the embedding of 
image I is obtained by representing patches of the 
image {p1, …, pN} with the node of a graph and 
using a k-nn strategy for the graph connectivity. 
Weights are found with the Gaussian kernel and 
the L2 norm, this is equivalent to using the Sum of 
Squared Differences (SSD) between the patches:

diss ssd( , ) .
SSD i j i j
= ∈p p p p I    ,  

Finally, Laplacian Eigenmaps is employed to 
embed the graph in to a 1D space. The structural 
image is created using the 1D embedding as the 
new intensities

Wachinger & Navab (2010b) performed ex-
periments on T1, T2, and PD-weighted MR images 
from the BrainWeb database1. Images contain 3% 
noise and 20% intensity non-uniformity for realis-
tic results. Figure 4 shows the original images, the 
structural images based on Laplacian Eigenmaps 
and a different type of structural images based on 
entropy (Wachinger & Navab, 2010c) for com-
parison. The assumption of comparable internal 
similarities in the images is justified, because the 

Figure 4. Multi-modal Registration with structural Representations. (Top) Examples of Structural repre-
sentations: a structural representation based on entropy (Wachinger & Navab, 2010c), and the Laplacian 
based structural representation. (Bottom) Errors for translation (in mm) and rotation (in degrees) for 
the registration of 3 datasets based on L2 (mono-modal), Mutual Information (MI), and the entropy and 
Laplacian structural representations.
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appearance of the Laplacian structural images 
across the modalities is similar. Note the differ-
ent nature of the entropy and Laplacian images.

To quantify the potential of the Laplacian im-
ages for registration, surface plots of the similar-
ity measures for translation from Wachinger & 
Navab (2010b) are shown in Figure 5 (a-l). A 
comparative study is done using the L2-norm on 
the original images, MI on the original images, 
and L2-norm on entropy and Laplacian images 
for all combinations of multi-modal alignment. 
Maxima indicate the best alignment. MI shows a 
very sharp peak at the correct position, but seems 
to have a limited capture range. Entropy images 
also indicate the correct position, but the cost 
functions contain several local maxima. The cost 
function based on Laplacian images has the larg-
est capture range. Figure 5-m illustrates similar-
ity plots for rotation. Note the limited capture 
range for MI and the local maxima for entropy 
images. Laplacian images lead to a wide and 
smooth peak, as desired.

Finally, a registration study was performed for 
all multi-modal image combinations. The random 
starting position deviates up to 15 mm in transla-
tion and 10 in rotation from the correct pose. 
Figure 4-m (bottom) shows the average absolute 
error for translation and rotation, together with 
the overall root mean squared error (RMS), for 
100 registration runs for each configuration. 1 
mm is weighted equal to 1 degree to quantify 
translational and angular displacement from the 
ground truth in one single value. Results confirm 
the Laplacian structural images are appropriate 
for multi-modal registration. The proposed 
method has a significantly lower error in com-
parison to MI and entropy images, whose perfor-
mance is comparable.

Ultrasound Image-Based Gating 
for 4D Volumetric Reconstruction

Breathing motion leads to a significant displace-
ment and deformation of organs in the abdominal 

region. This makes the detection of the breathing 
phase for numerous applications necessary. Usu-
ally the assignment of an image to a breathing phase 
is achieved with external gating devices. These 
devices have long setup times, prolong the overall 
acquisition, are costly, and consequently, rarely 
used in practice. Moreover, the synchronization 
of image data and breathing signal is not trivial. 
As an alternative, a purely image-based respira-
tory gating approach for ultrasound was recently 
proposed in (Wachinger, et al., 2010d) based on 
manifold learning. The method is automatic, and 
does not require prior information or training data.

The method is applied to 2D and 3D mosaicing 
and to the acquisition of breathing affected 4D 
ultrasound with a mechanically steered transducer 
(wobbler). For the later, the image-based gating is 
used independently to images acquired from the 
same wobbler angle. Once the respiratory signals 
are estimated for each angle, the resultant curves 
are aligned and a globally consistent respiratory 
signal is computed. The recovered signal allows 
the reconstruction of volumes for specific breath-
ing stages.

The image-based gating relies on the as-
sumption that the ultrasound images lie on a low 
dimensional manifold in the ambient space. This 
suggestion is justified because variations between 
neighboring slices are smooth, and slices from 
the same respiratory phase but different acquisi-
tion times are similar. The Laplacian Eigenmaps 
algorithm assigns each ultrasound frame a coor-
dinate in low dimensional space, mapping im-
ages of similar breathing stages nearby. The new 
low-dimensional space is thereby well suited for 
estimating the breathing cycle.

Consider the N ultrasound images {I1, …, Ii, 
…, IN} that are acquired over several breathing 
cycles. The idea in (Wachinger, et al., 2010d) is to 
map these images to a low 1-dimensional space. 
If the main image changes come from breathing 
the 1D representation is expected to correlate 
with the breathing signal. A graph is constructed 
where each vertex stands for an image Ii. k-nn are 
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selected to determine the edges based on the SSD 
image similarity (k=14). A Gaussian kernel also 
based on the SSD is used to assign the weights 
to the edges. The one-dimensional representation 
is recovered with Laplacian Eigenmaps. For 4D 
ultrasound videos, the manifold learning is ap-
plied to the images of each angle independently. 
Then, the resultant curves are aligned, and a robust 
spline-curve fitting is used to create a globally 
consistent respiratory signal.

Experiments are performed on multiple patient 
datasets acquired from different positions, focus-

ing on the liver and kidney. The performance of 
the image-based gating is quantified by against 
measurements from an external gating system. 
Figure 6-a illustrates excerpts of two datasets. 
The number of images for manifold learning 
varies between 100 and 300. Figure 6-b shows 
the result of the respiratory gating for one of the 
2D datasets together with the ground truth sig-
nal. The estimated signal closely resembles the 
ground truth, and peaks of the signals coincide. 
The correlation coefficient computed for multiple 
2D datasets is in the range of 95%, confirming 

Figure 5. (a-l) Similarity measures with respect to translation in x and y directions. Maxima indicate 
best alignment. (m) Plot of similarity measures with respect to rotation.
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the visual similarity of the graphs. Correlation 
coefficients for four 2D datasets are reported in 
Figure 6-c-left.

For the 4D experiments, the result of a fitted 
curve is shown in Figure 6-d. The correlation 
coefficient between the fitted curves and ground 
truth for four 3-D datasets is calculated and re-
ported in Figure 6-c-right. The breathing signal 
is split into 9 different breathing stages, and a 3D 
volume is compounded for each of the stages. A 
volume rendering of one of the volumes is shown 
in Figure 6-e.

Human Motion Analysis

Analysis of human motion is useful for diagnosis 
and life-quality studies of neurological diseases 
involving human motion disorders such as Par-
kinson, multiple sclerosis, or epilepsy (Schwarz, 
et al., 2009). The main difficulty for a meaning-
ful analysis is the need of capturing motion in 
everyday environments for extended periods of 
time. This is only possible with portable sensors. 
However, human motion is complex and recover-
ing poses from only sparse, noisy and ambiguous 

Figure 6. (a) Excerpts of two ultrasound datasets; (b) Estimated breathing phase for a 2D dataset; (c) 
Correlation of the estimated and ground truth breathing signals; (d) Estimated breathing phase for a 
3D dataset; (e) 3D compounding using the breathing signal in (d) for one phase.



392

Learning Manifolds

sensor readings is challenging. Schwarz, et al. 
(2010) propose a learning-based solution to the 
problem, relying both on a reduced set of inertial 
orientation sensors, and on prior motion models 
built during the learning stage. The method allows 
recovering the human pose and activity over time 
from the portable sensors. A set of predefined 
activities is considered, which is in accordance 
to protocols that physicians employ for diagnosis 
(e.g. jump, run, walk, etc).

The approach starts with the creation of 
multiple person-specific motion models in the 
learning phase. Synchronous full-body poses 
and sensor readings of a person performing the 
activities of interest are captured during this 
phase. The motion models are created from the 
low dimensional representation of the full-body 
poses computed using Laplacian Eigenmaps. Ad-
ditionally, regression is used to learn a mapping 
from the low-dimensional representations to both 
the joint-angle space and to the space of sensor 
readings. During the test phase, the motion models 
are embedded in a Bayesian tracking framework 
to determine the pose and activity of the subject. 
The motion models constrain the high dimensional 
space of full-body poses and, at the same time, 
help dealing with the ambiguous information 
provided by the sensors. Using the learnt motion 
models, tracking of full-body poses can be done 
in everyday environments, as only the sensors 
need to be worn. An overview of the method is 
shown in Figure 7-a.

Formally, for given a set of M activities of 
interest identified by an index a Î { , ..., },1   M  
training data consisting of synchronously acquired 
full-body poses and sensor readings is used to 
build M motion models. In practice, Nα full-body 
poses X =a a a a

a{ , , }x x x
1 2



N
are recorded 

with a motion-capture system for each activity, 
where each vector x R

i

DXa Î  describes a human 
pose represented by DX joint angles of a skeleton 
model (here DX=35). Along with the full-body 
poses inertial sensor observations from a reduced 
number (4 to 6) of sensors Sα= { , , }s s s

1 2
a a a

a

N
 

are also acquired, where each observation 
s R
i

DSa Î  contains a 2D global orientation mea-
surement for all the sensors.

To build the motion models, first, the low 
dimensional representations are obtained for each 
activity α. Following the Laplacian Eigenmaps 
algorithm, a graph is built with the nodes repre-
senting each pose x

i
a.  A k-nn system is employed 

and weights are determined with a Gaussian 
kernel based on the Euclidean distance:

diss ( , ) .
joint

x x x x
i j i j
a a a a= −

2
 

As the result of applying the Laplacian Eigen-
maps algorithm to the poses of each activity, a 
series of low dimensional representations 
{ , , , , }Y Y Y1

 

a M  is obtained, one per 
activity. Each low dimensional representation 
contains the coordinates of the mapped points
Y y y ya a a a

a= [ , , , ]
1 2



N

T  w i t h 

y R
i

d i Na a∈ ∀ ∈  .  { , .., },1  and with d D
X

<<

.
The low dimensional representations for each 

activity are accompanied with three other elements 
to build a complete motion model (c.f. Figure 7-b):

• Predictive Mappings: are learnt from the 
training data using non-linear kernel re-
gression, in order to relate poses in low di-
mensional embedding space to sensor 
measurements ( ( ))gy s y®

a  and to full-body 
poses ( ( )),gy x y®

a  with y RÎ d .

• Pose Likelihood Prior: Using kernel den-
sity estimation and the training data for 
each activity, authors derive the likelihood 
prior for arbitrary poses in low dimension-
al embedding space p

pose
( ).a y  Intuitively, 

poses y RÎ d  that are close to points yi
𝛼 in 

training data should have higher 
likelihood.
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• Activity Switching Prior: Distribution
pswitch y
a ( )  is defined for every motion mod-

el that describes how likely a switch of ac-
tivity is, given a pose in the low dimen-
sional space y RÎ d .

Bayesian Tracking Using 
Multiple Motion Models

The testing phase of the method consists of track-
ing the pose in low dimensional embedding space. 
We seek for the most likely pose yt and activity 
αt, given the observations up to st. Following a 
generative model and a standard Bayesian track-
ing formulation, the solution is given by the 
maximum of the posterior probability at time t, 
shown in Exhibit 4.

The observation model p(st | yt , αt) relates 
observations to the learned motion model, and is 
defined as a product of three terms: first, the 
prediction likelihood measuring the likelihood of 
observation st given the predicted sensor reading 
g t

ty s y®
a ( )  from pose yt; second, a temporal smooth-

ness term, and third, the pose likelihood prior
p t

pose
( )a y  encouraging poses close to the training 

data.
The dynamics model p

t t t t
( , | , )y ya a- -1 1

 de-
termines how pose estimates are updated from 
one time step to the next. Following (Isard & 
Blake, 1998), a model

 
p p p

t t t t t t t t t t t
( , | , ) ( | , , ) ( | , )y y y y ya a a a a a− − − − − −=

1 1 1 1 1 1
 

Figure 7. (a) Overview of the human body pose tracking and activity recognition method; (b) Motion 
models based on a low-dimensional representation obtained with Laplacian Eigenmaps for different 
activities.
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is used that factors the activity dynamics from the 
dynamics of the pose:

• Assuming that all sequences of consecu-
tive activities are equally likely, the proba-
bility of switching from a given activity αt-1 
to any other activity only depends on the 
previous pose yt-1. Thus, the activity dy-
namics model is based only on the activity-
switching prior
p p

t t t t
t( | , ) ( ).a a ay yswitch− − −= −

1 1 1
1

• The pose dynamics model governs the evo-
lution of poses in embedding space. When 
there is no switch of activity (αt = αt-1), dy-
namics are governed by a random walk. In 
the case of activity switching ( ),a a

t t
≠ −1

 
the dynamics model follows the pose like-
lihood prior p t

pose
( )a y  of activity αt.

A particle filter (Isard & Blake, 1998) adapted 
to use multiple motion models is used to sample 
the posterior density. This allows simultaneously 
evaluating pose hypotheses in different motion 
models and selecting the most appropriate model. 
The current activity â

t
 is estimated as the most 

frequent activity among the highest-weight par-
ticles. The pose estimate ŷ

t
 in low dimensional 

space is computed as a convex combination of 
the positions of the highest-weight particles with 
activity ˆ .a

t
 The full-body pose at time t is obtained 

as ˆ (ˆ ).ˆx yy xt t
g t= →
a Figure 8-a illustrates the par-

ticle filter algorithm for a testing sequence switch-
ing from the “waving” to the “golfing” activity.

For the experiments, a synchronized dataset 
of full-body poses Xα and sensor values Sα, 
a Î { , ..., }1   M  is obtained using a motion cap-
ture system and six wearable inertial orientation 
sensors placed on wrists, upper arms and shin-
bones. An observation s R

i

DSa Î  has DS = 12. In 
the training phase, a 2D manifold embedding Yα 
is learned for each activity. Authors consider M 
= 10 activities: clapping, golfing, arms up, jump-
ing jack, knee bends, binding laces, picking up, 
scratching head, walking and waving. Each of the 
movements was recorded 6 times with 9 persons. 
Every movement has 600 frames. The testing data 
consists of 5 sequences per person containing all 
activities (~2000 frames each). For tracking, only 
the inertial sensor values were used, the motion 
capture data served as ground truth. All experi-
ments were performed in a cross-validation 
scheme.

Activity Classification. The number of particles 
per activity manifold is an indicator of activity 
class membership. The confusion matrix in Figure 
8-b giving the classification rates for all activities 
over all testing sequences is almost diagonal. Mis-
classifications mainly occur at the beginning and 
end of activities, which is normal, as the person 
stands idle. On average, authors report a correct 
classification rate of 89% for all non-idle frames.

Pose Estimation Accuracy. To measure how 
precisely the poses estimated match the ground 
truth authors use two metrics. The angular error 
eang gives the deviation from the ground truth 
in terms of joint angles. The distance error edist 
is the difference in 3D space between predicted 

p p p

p p
t t t t t t t t t

t t t t

( , | ) ( | , ) ( , | )

( | , ) ( ,

y s s y y s

s y y

   

  

a a a

a

=

=
−1

aa a a a
t t t t t t t t

p d d| , ) ,
.

y y s y− − − − − − −∫∫ 1 1 1 1 1 1 1
  (  | )

Exhibit 4.
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joint locations and the ground truth. Averaged over 
all frames of the testing sequences, the algorithm 
achieved eang = 6.23° per joint and edist = 45.2mm. 
As shown in Figure 8-c, the deviation from the 
ground truth only increases for fast movements 
with a large variability, such as jumping jack or 
walking. Results are comparable to other state-
of-the-art methods that use visual observations 
(Vlasic, et al., 2007).

DISCUSSION

In the previous sections we have presented 
methods that use manifold learning to deal with 
different medical applications. The medical field 

seems to be well adapted for such approaches, as 
many datasets comply with the manifold assump-
tion. In such cases, manifold learning methods 
recover non-linear low dimensional maps that 
capture data relationships better than the linear 
ones. We have focused on Laplacian Eigenmaps 
because it is mathematically well supported and 
preserves local neighborhoods. Other algorithms 
rely on different preservation criteria and give 
different results. When choosing an algorithm 
it is important to be aware of the cost function 
being optimized and the constraints imposed on 
the mapping (from the high to the low dimen-
sional space), and verify they are consistent with 
the goals of the application. After choosing the 
algorithm there are design tools (e.g. the neigh-

Figure 8. (a) Particle filter-based activity switching: Two manifold embeddings over several frames with 
particles (red crosses), particles used for predicting full-body pose (dark circles), and trace of previous 
frames (green crosses). Shown below the corresponding predicted and ground-truth body poses; (b) Ac-
tivity classification. Top: Number of sampled particles per frame and per activity. Bottom: Ground truth 
classification and predicted activities for each frame of the sequence; (c) Confusion matrix computed 
from the classification results for all testing sequences; (d) Pose estimation accuracy for all activities.
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borhood system and pairwise similarities) which 
are determinant to the outcome of the map. If the 
manifold assumption is broken, the sampling of 
the manifold is not regular, or the chosen method 
and design tools are not well adapted to the appli-
cation, it is expected that manifold learning does 
not behave better than linear reduction methods 
(van der Maaten, et al., 2009). Also it should be 
noticed that when prior information on the nature 
of the manifold is available or when data samples 
are generated in a controlled manner, it may be 
more appropriate to approximate the manifold’s 
metric or to fit a parameterized manifold instead 
of learning it (Baloch & Davatzikos, 2009; Xie, 
et al., 2010).

Concerning the design tools, we have described 
the basic k-nn and ε-ball neighborhood systems, 
and discussed the possibility to define the neigh-
bors to account for temporal constraints. Besides a 
grid search, there is currently no systematic way of 
computing the parameters k and ε. More complex 
systems (e.g. adaptive neighborhoods [Wang,, et 
al., 2005]) can be useful for compensating non-
uniform samplings. The neighborhood system can 
also be used to incorporate partial prior knowledge 
leading to a semi-supervised embedding of the 
graph (LeCun, et al., 2006; Tiwari, et al., 2010).

Concerning the design of the weights, it is 
most common to use the Gaussian kernel with an 
L2 norm. Studies of different image similarities 
are presented in Souvenir & Pless (2007), Atasoy 
et al. (2010), including SSD, NCC, the power 
spectrum and the divergence of the optical flow. 
Other ways to compute the weights include the 
use of neural networks (Lim, et al., 2003), phase 
difference of local complex Gabor filters (Zhang, et 
al., 2006), shape similarities based on the Sobolev 
norm and signed distance functions (Etyngier, et 
al., 2007), approximations to the diffeomorphic 
metric (Gerber, et al., 2010), diffeomorphic simi-
larities (Sparks & Madabhushi, 2010), structural 
segmentation overlaps (Aljabar, et al., 2008) and 
the norm of the displacement field after registra-
tion (Aljabar, et al., 2010). Finally, Tiwari, et al. 

(2010) explore the computation of the weights 
using multi-kernel to integrate heterogeneous 
information from independent channels.

One of the difficulties of using manifold 
learning is that, as opposed to linear maps, the 
algorithms do not inherently provide a function 
to map new data points to the low-dimensional 
space. This problem has been approached with the 
approximation of locally linear projections (He, et 
al., 2005) or by means of kernel-regression (Ben-
gio, et al., 2003, Etyngier, et al., 2007; Gerber, et 
al., 2010). Such maps are required when the low-
dimensional representation is used within a gen-
erative model (Schwarz, et al., 2010). There also 
exist non-linear reduction methods that directly 
learn mappings from and to the low dimensional 
representation (Lawrence, 2005; Carreira-Perpi-
ñan & Lu, 2008). A second difficulty of manifold 
learning is the complexity of the eigenanalysis. 
When the systems are sparse, as is the case in 
Laplacian Eigenmaps, efficient solutions exist. 
However, very large datasets may still require 
approximate solutions (Talwalkar, et al., 2008). 
The last difficulty concerns the dimension of the 
low-dimensional space, which is not automatically 
determined by the algorithms. As opposed to PCA, 
eigenvalues of spectral manifold methods do not 
provide information on the dimension. In cases 
of simple movements (e.g. respiratory motion) a 
small number of dimensions generally suffices, 
however without a-priori knowledge the problem 
of determining a suitable number of dimensions 
for the embeddings remains unsolved.

CONCLUSION

In this chapter we have discussed the design of 
manifold learning algorithms for medical ap-
plications. A review of the state of the art in the 
field is provided showing the increasing interest 
of researchers in the domain and a wide range 
of applications where these methods can be ap-
plied. We recalled the theory and assumptions for 
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manifold learning and described in details one 
exemplary algorithm (Laplacian Eigenmaps). Five 
case studies were presented showing a parallel 
on the adaption of this method to very different 
applications and illustrating the key design ele-
ments in each case. The last case study addition-
ally shows how to integrate low dimensional 
representations created with manifold learning 
in a generative framework. Although manifold 
learning is attractive because of its flexibility 
and non-linearity, several difficulties may arise 
in practice; in particular, the lack of a function 
to relate the high and low dimensional spaces, 
and of some means to determine the parameters. 
Most important to ensure a successful application 
of manifold learning techniques are:

• verifying that the data complies with the 
manifold assumption and that it is approxi-
mately regularly sampled,

• choosing an algorithm whose cost function 
and constraints preserve the relevant infor-
mation for the application,

• and designing pairwise relationships that 
incorporate the domain knowledge to best 
approximate the manifold.
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ENDNOTE

1  Let wj be a column (or row) of W, with
j NÎ { , ... , },1     and denote the j-th element 
of vector y(l) as yj

(l), then (see Exhibit 5).
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