Left Ventricle Segmentation in Cardiac Ultrasound Using Hough-Forests With Implicit Shape and Appearance Priors
Fausto Milletari¹, Mehmet Yigitsoy¹, Nassir Navab¹,³, and Seyed-Ahmad Ahmadi²

Motivation
- US has advantageous properties for cardiac imaging
 - Radiation free
 - Real-Time
- Cardiac functionality assessed via Left Ventricle volume estimation
- Manual segmentation of Left Ventricle is time-consuming

Related Work
- Pedestrian segmentation using Hough forests [1]
- Automatic LV segmentation based on deep learning [2]

Our contribution
- Fully automatic segmentation method based on Hough forest
 - Incorporates shape and appearance knowledge
 - Predicts position of the LV center
 - Predicts probabilistic segmentation

Training Stage
- Each data-point from training images
 - Corresponds to a patch
 - Is described by N-dimensional intensity based feature vector
 - Carries spatial displacement between itself and LV center
 - Is associated with segmentation patch from ground truth
 - Is associated with appearances occurring in correspondence of segmentation
 - Foreground = boundaries in US image

Testing Stage
- Object center localization
 - Classification of each data-point
 - Data-points that are classified as foreground vote for LV center
 - Votes are weighted by confidence and accumulated into volume
 - Position of maximum accumulation is LV center
- Contour Estimation
 - Each vote falling near LV center re-projected to position x of the data-point that cast it
 - Obtain segmentation patch S_p corresponding to the vote from the code base
 - Recover intensity patch I_p corresponding to S_p
 - Apply segmentation S_p at location of data-point after weighting with truncated NCC between I_p and the intensities around x
 - Accumulate segmentation patches and normalize to obtain final segmentation

Results
- 15 end-diastolic test images:
 - Mean Absolute Distance: 2.37 mm
 - Mean Hausdorff distance: 9.52 mm
 - Mean mod. Dice coefficient: 0.123
- 15 end-systolic test images:
 - Mean Absolute Distance: 2.93 mm
 - Mean Hausdorff distance: 8.64 mm
 - Mean mod. Dice coefficient: 0.166

Conclusions
- Bigger segmentation patches generate smoother contours
 - More shape than appearance regularization
- Outliers during classification do not degrade performance
 - Unless their votes accumulate in strong peaks
 - Prefer features that are directionally discriminative instead of class discriminative

References