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Abstract. We introduce a new approach to characterise brain tissue
microstructure combining diffusion MRI and relaxometry. The tissue is
modelled as a composition of water pools with distinct T2 and diffusiv-
ities. Mathematically, we establish a blind source separation framework
that we solve using sparse component analysis. Results show that this
technique is able to extract distinct diffusion and relaxometry properties
of the different water pools.

1 Purpose

Brain tissue microstructure characterisation through diffusion MRI[1,5,9,11] and
relaxometry[7] have been a topic of interest for the last 20 years. However, only
few works have considered both methods together[6,8]. These techniques have
high scanning time requirements and need for regularisation to separate tissue
components. In this abstract we integrate the work on tissue characterization
from the relaxometry and diffusion perspectives. We present a new approach
that does not require regularisation and is less acquisition time demanding. To
this end, we use sparse component analysis (SCA)[2] of the diffusion signal to
estimate the number of compartments present in the tissue, their T2 decays,
volume fractions and diffusivities, as well as the proton density (PD) for each
voxel. For the signal model, we assume that 1) the brain tissue contains distinct
water pools; 2) there is no water exchange between them; and 3) each pool has
a different T2 and diffusivity.

2 Methods

When a diffusion protocol is acquired for a given echo time (TE) the measure-
ment is a linear combination of the diffusion signals from each compartment
(Ei, i = 1, ..., N compartments) scaled by the volume fractions (fi) and the
inverse exponential of the ratio between the TE and each T2i (Eq. 1).
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S(TE,∆, q) = S0

N∑
i=1

fie
TE/T2iEi(∆, q). (1)

If the same diffusion experiment is repeated for different values of TE, the
mixtures of the linear combination of the sources change, producing different
signal strengths, according to Eq. 2.
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. . .
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TEM/T21 · · · fNeTEM/T2N
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 , (2)

or equally X = AS.
Only the noisy measurements are known (X). However, we are interested in

the mixing matrix (A), that only depends on the volume fraction and relaxation
properties of the tissue, and the compartmental diffusion sources (S). Typically,
this is a blind source separation problem. Approaches based on independent
component analysis (ICA) cannot be used since the diffusion sources are not
statistically independent. Principal component analysis (PCA) does not offer
a good alternative given that the sources are not orthogonal. Therefore, non-
negative matrix factorization (NMF) and sparse component analysis (SCA) are
the two suitable solutions. NMF is discounted as it requires prior knowledge of
the number of compartments. Therefore, SCA is used here. It relies on finding a
transform domain where the sources (rows of S) are sparse and disjoint. When
these requirements are met, only a few elements in S are non-zero. Then, only
one of the sources is active at a time and therefore, the contribution of each
specific source to the measured signal can be estimated.

We study this approach by simulating a three compartment tissue made of
myelin, intra-extra (IE) axonal water and CSF[7]. The volume fraction for each
compartment are based on a fuzzy segmentation with tissue probabilities for
grey matter (pGM ), white matter (pWM ) and CSF(pCSF ) [3]. We split the WM
and GM probabilities into myelin and IE probabilities by multiply them by a
volume of myelin of 11.3% for WM and 3.1% for GM[10] (pWM

myelin = 0.113pWM ,

pWM
IE = 0.887pWM , pGM

myelin = 0.031pGM , pGM
IE = 0.969pGM ). Data was sim-

ulated using three one-dimension diffusion protocol comprising for 32 equally
spaced q-values from 0 to 0.8106 m−1, for TE values of 40, 70 and 80ms. The
diffusion sources were generated with Camino[4] using restricted, hindered and
free diffusion models for the myelin, IE water and CSF respectively (Fig 2d). Fi-
nally, the T2 decays for each compartment were 30ms, 90ms and 2s for myelin,
IE and CSF[7]. Signals were mixed using Eq.1 to generate the measurements
(X). Then, Rician noise was added up to an SNR of 30 dB at b = 0. Finally, the
signals were disentangled with SCA using a Gaussian wavelet transform. This
type of wavelet has a Gaussian envelop that is similar to the measured 1D diffu-
sion signal thus, transformed coefficients are sparse and, as disjoint as different
their diffusion coefficients are.
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3 Results

Fig. 1. Comparison between the noisy estimates (left) and the noise free ground truth
(right).

Fig. 1 presents the volume fractions for CSF (a), IE (c) and myelin (e) com-
pared to their reference tissue type probabilities (b, d, f). The normalised PD is
shown (Fig. 1g) in comparison to the ground truth (Fig. 1). The distribution of
the values in Fig. 1(a, c, e) are presented in Fig 2b along with the disentangled T2
(Fig. 2a) and diffusivities (Fig. 2c) for each compartment. The probability values
in Fig. 2 correspond to the histograms of the parameter for each compartment
and cannot be compared to others.

4 Discussion

High correlation levels between the estimates and the references for CSF, IE and
PD are shown in Fig. 1(a-b, c-d and g-h) indicating a good level of separation
for the volume fractions. However, myelin correlation level (Fig. 1e-f) is lower,
pointing out the difficult detection of short T2 decay components within the
limits of feasible TE values. Fig. 2b shows the histogram distribution volume
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Fig. 2. Histograms for T2 values (a), volume fractions (b) and diffusivities (c). Dashed
lines mark the reference values while solid lines correspond to the estimates. Diffusion
signal sources are shown in (d)

fractions. The myelin and IE fractions are correctly extracted for WM, while for
GM the peaks are shifted to 0 and 1 respectively, due to the low level of myelin
present in that tissue. The T2 distribution (Fig. 2a) presents a bias between 15
to 30ms for myelin, while accurately capture the reference value for IE and CSF.
The diffusivity also shows a good agreement between estimates and reference for
the three compartments. Nevertheless, the small amount of myelin signal in the
mixture yields a low SNR disentangled source preventing for a reliable diffusivity
estimate for this compartment.

5 Conclusions

To the best of our knowledge, this is the first attempt to use SCA to charac-
terise tissue microstructure using diffusion MRI. Although this proof-of-concept
is subject to further improvement, the results presented here indicate that this
technique is able to disentangle multiple compartments and thus, can be used
to study the T2, volume fractions, diffusion and PD properties of the tissue
microstructure simultaneously. An alternative approach to disentangle relaxom-
etry and diffusion information is presented in[6]. Although, unlike SCA it relies
on heavy regularisation. Finally, since A is independent of the diffusion signal,
this technique can be applied to any diffusion protocol. This paves the way for
potential applications such as free water elimination or estimation of the com-
partmental propagator.
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