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Abstract

We introduce a novel sensor fusion approach for auto-
mated initialization of marker-less tracking systems. It is
not limitated in tracking range and working environment,
given a 3D model of the objects or the real scene.

This is achieved based on a statistical analysis and prob-
abilistic estimation of the uncertainties of the tracking sen-
sors. The explicit representation of the error distribution
allows the fusion of different sensor data, e.g. of mobile
tracking sensors with stationary sensors, in order to esti-
mate the initial pose and improve the registration accuracy.

This methodology was applied to an augmented reality
system, using a mobile camera and several stationary track-
ing sensors, and can be easily extended to the case of anny
additional sensors. The initialization consists of an iterative
pose estimation and refinement process using both station-
ary and mobile cameras. Thereby the registration error is
minimized in 3D object space rather than in 2D image.

Experimental results show how complex objects can be
registered efficiently and accurately to an single initial im-
age.

1. Introduction

Tracking mobile users and objects is a central part of ev-
ery augmented reality (AR) system. Among many available
tracking technologies the vision-based tracking systems are
in many application fields the method of choice due to their
accuracry and flexibility. Thereby, tracking is known as the
pose estimation problem, and means estimating the rigid
transformation that relates 2D camera images to 3D geome-
try. While most of the current vision-based trackers rely on
markers, there have been there are a few efforts addressing
marker-less tracking in the literature [7, 24, 5, 17, 23, 18].
Because of several reasons marker-less tracking with mo-
bile cameras is still one of the currently most challenging
tasks in augmented reality.

A main crucial problem with the current marker-less

tracking systems that make them yet not suitable in many
industrial applications is the automated initialization, i.e.
providing the system automatically with the initial pose of
the user’s view or camera. This procedure also needs to
be done each time the system looses track e.g. due to fast
movements or occlusion.

We propose an automated initialization approach for in-
door as well as outdoor environments. The initial positional
data can be provided by stationary cameras in closed build-
ings and for instance by GPS for outdoors. The correct ini-
tialization is achieved by fusing the data from multiple sen-
sors, e.g. mobile and stationary camras or GPS. In cases
where tracking is lost for instance because of large occlu-
sions, the initialization procedure is started automatically.
This approach can be easily extended to the case of anny
additional sensors.

Our system requires a rough 3D model of the target ob-
ject or the scence for automatic initialization and track-
ing. This is not a problem in practice, since in many ap-
plication a 3D model already exists (e.g. in automotive
industry) or can be created automatically or easily inter-
active by commercially available software like ImageMod-
eler from RealViz, Canoma from Metacreations or Boujoi
from 2D3. Furthermore, technological advances in three-
dimensional scanning provide accurate devices for auto-
matic model building.

A few approaches propose methods for marker-less
tracking based on natural features [7, 24, 13, 17, 23, 5, 18].

Genc et al. [7] proposed a general learning-based frame-
work for feature-based tracking using a single camera. In a
two stage process first a set of natural 3D features is learned
using an external tracking system (e.g. marker-based). In
the second stage the system uses these learned features for
tracking as soon as enough stable ones are acquired in the
first stage. Their marker-less tracking system needs an ini-
tialization that provides a rough estimate of the cameras po-
sition and orientation. They make use of an external marker-
based tracker for initialization. Once the system looses
track it needs to be re-initialized in the same way. They
however confirm that such initialization solution is not ac-



cepted by users. In this case the initialization process does
not need to be very accurate and in perform real-time. The
system is able to converge even with partial or imprecise
tracking information for initializating system.

Vacchetti et al. [24, 13] propose an automatic initial-
ization method that relies on a learning stage, wehere a
data base of key features is constructed based on a set of
keyframes taken during an offline procedure. The key fea-
tures consist of a 3D point on the object model and a view-
point invariant local descriptor based on its appearance in
the images. The initialization is done by robustly matching
feature points in the initial image with the points present in
the database based on a similarity measure. A disadvantage
of this method is that these local descriptors are sensitive to
scale and zooming. Therefore the working space is limited
in tracking area that is covered by sufficiently enough key
frames.

Satoh et al. [21] use a bird’s-eye view camera additional
to the mobile camera that constrains the pose estimation
problem. Nevertheless, they don’t make use of it in the ini-
tialization phase. The initial registration is done each time
manually by moving the mobile camera closely to a prede-
fined initial pose.

Our intention is to use stationary cameras for non-precise
tracking of a user’s head and combine the tracking data with
those acquired by mobile cameras. Thereby special atten-
tion is given to the statistical analysis of the errors in sen-
sors. Specially suitable for this purpose are the networked
smart cameras. These cameras are equiped with integrated
processors and signal processor chips that can immediately
process images formed on the sensor chips. The cameras
are thus autonomous, i.e. independent from a computer, and
provide their tracking results via wireless network to mobile
or stationary PCs where the AR applications are running.

This is designed to be integrated in an ubiquitous track-
ing environment [25], where different tracking sensors
with different modalities are used to build dynamically
extendible networks of trackers with high-precision, low-
latency requirements. The proposed approach can be ex-
tended to any kind of trackers, since the uncertainties of
those individual trackers are taken into account.

In this paper we will focus on the automated initializa-
tion of a marker-less tracking system. The paper is orga-
nized as follows: First the mathematical problem definition
is given in section 2.1. In section 2.2 we discuss the related
work. Section 3 gives a general overview of our method
and explains the details of it in the following subsections.
In section 4 we present our experimental results. Conclu-
sions and future work are provided in sections 5.
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Figure 1. The collinearity errors in object and
image space.

2 Background

2.1 Mathematical Problem Definition

Given a set{Pi|0 < i ≤ n} of n object pointsPi =
(Xi, Yi, Zi)t, in the world coordinate system (WCS), the
set of corresponding coordinatesQi = (Xi, Yi, Zi)t in
the camera coordinate system (CCS), are related by a rigid
transformation

Qi = RPi + t

whereR = [r1, r2, r3]t is a3 × 3 rotation matrix andt =
(tx, ty, tz)t is a translation vector.

We choose the projection center of the camera as the ori-
gin of the camera coordinate system with the optical axis
pointing in the positivez direction. The object points are
projected onto the plane withz = 1, the normalized im-
age planein the camera coordinare system. We assume that
the internal calibration parameters of the camera, e.g. fo-
cal length, principal point, lens distortion, etc. are known.
The image pointpi = (ui, vi, 1)t is the perspective proe-
jction of the object pointPi to the normalized image plane
according to the following equation.

pi =
RPi + t
r3Pi + tz

. (1)

This equation is called thecollinearity equationand says
thatpi, Qi and the projection center of the cameraO are
collinear.

However, another way of thinking of collinearity is that
the orthogonal projection ofQi on the projection ray ofpi

is equal toQi itself [15]. This can be formulated as

RPi + t = Fi(RPi + t), (2)
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whereFi is a projection operator [15] and is defined as
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pipt
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 . (3)

We refer to (1) as theimage space collinearity equation
and (2) as theobject space collinearity equation.

The pose estimation problem is to find the rigid trans-
form (R, t) that best fits the known 3D object data with
the observed 2D image data (see Figure 1). Usually this is
achieved by minimizing some form of accumulation of er-
rors (least squares methods) based on one of the collinearity
equations in object or image space.

For transformation of a coordinate systemA to another
coordinate systemB we represented the motion by a4 × 4
homogeneous transformation matrix

TB
A
∼=

(
R t
0 1

)
.

An alternative representation of the pose is by a six el-
ement vectors = (tx, ty, tz, θ, φ, ψ) containing the three
translational parameters and three angles of rotation around
the three main axes. Equivalently quaternion representa-
tion can be used for orientation. In this paperf denotes the
function which projects object pointsPi to image points
pi = f(Pi, s) in a camera with the pose specified bys.

2.2 Previous Work

3D-2D registration in general is still a difficult unsolved
problem in computer vision. Classical approaches make
use of the ICP principle for pose or motion estimation
[27, 3, 26]. The problem with the ICP based algorithms
is that they converge to the closest local minimum, and thus
not appropriate for solving large motion problems. We try
to overcome this problem by coupling a global method to
obtain a rough pose estimation using stationary cameras
(see section 3.3)

The other way for the intialization is to obtain a set of
initial registrations by sampling the 3-D orientation space,
and then apply the algorithm to each initial registration. The
optimal solution is the one with the global minimum error.
This method was used by Besl and McKay [3] to solve the
object recognition problem.

Formulating pose estimation as a nonlinear least squares
problem, and solving it by nonlinear optimization algo-
rithms is the classical approach used in photogrametry
[Rosenfeld59, Tompson68, Haralick93]. Typically Gauss-
Newton method or ... (Tamura) are used for this purpose. In
computer vision Lowe used the Gauss-Newton method for
the pose estimaton problem [Lowe87,92]. Starting from a
good initial guess of the pose, the model is projected into

the image plane and correspondences are found. This is
done using a probabilistic approach to match image features
with projected model entities. Having the correspondences,
Gauss-Newton method is applied to determine the object ro-
tation and translation. Most of such nonlinear optimization
procedures rely on a good initial estimation of the pose.

Hager et al. propose a method to minimize a error met-
ric in object space and then show that this function can be
rewritten in a way which admits an iteration based on the so-
lution to the 3D-3D pose estimation orabsolute orienation
problem[Haralick]. They formulated the pose estimation
problem is as that of minimizing the collinearity error in
object space rather than in the image space. We use a pose
estimation method introduced by Hager et al. [15] to min-
imize the object space collinearity error (?). They propose
an iterative algorithm which directly computes orthogonal
rotation matrices, is fast and globally convergent.

The algorithm operates by successively improving an es-
timate of the rotation protion of the pose, and then estimates
an assiciated translation. The intermediate rotation esti-
mates are always the best ”orthogonal” solution for each
iteration. The orthogonality constraint is enforced by us-
ing singular value decomposition, and not from a specific
parametrization of rotations e.g. euler angles. The iterative
algorithm computes directly the orthogonal matrix and is
proven to be globally convergent.

3. Overview of our Approach

The initialization of the tracking system is done as fol-
lows. First we estimate the position of the user’s viewpoint
with stationary cameras using a head tracking system and
use the image taken by the mobile camera, referred to as the
initial image, to estimate the initial orientation parameters
(see section 3.3). The estimation is then refined by applying
the optimization procedure described in section 3.4. During
this estimation and refinement process particular attention
is given to error propagation and statistical analysis.

To refine the pose data, we introduce a novel method for
robust ICP based pose estimation based on defining of two
collinearity constraints. They are used as a quality measure-
ment for outliers detection and removal, therefore increas-
ing the efficiency of the algorithm while providing the same
accuracy as the classical method intrduced by Hager et al.
[15].

Using a camera for tracking the greates uncertainty of
the pose estimate is along the line of sight of the camera
and the smallest error is perpendicular to this line. The rea-
son is that a small translation of the camera parallel to image
plane would result in an easily measurable change in the im-
age where a small translation perpendicular to image plane
generates only a small displacement in the image.

In our approach the data from mobile and stationary
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Figure 2. The iterative initial registration ap-
proach.

cameras are combined in order to estimate the pose of the
user’s view accurately.

Fig. 2 gives an overview of the automated initial reg-
istration approach with one stationary camera. The uncer-
tainty ellipsoid determined by the stationary cameras shown
in Figure 2 is a function of the characteristic of the exter-
nal outside-in tracking system and the position of the user’s
viewpoint. Using more than one camera or even other track-
ing devices, only the shape of the uncertainty ellipsoid will
change and requires no further handling in our system.

The main steps of our iterative initial registration algo-
rithm are:

1. Estimating the initial positiont1 = (tx, ty, tz) of the
user’s viewpoint using stationary cameras and its un-
certainty as described in section 3.1 (Outside-In).

2. Estimating the initial orientationr1 = (θ, φ, ψ) by ex-
tracting edges from the initial image and finding the
best match of the edges in the initial image with the
edges on the nearest environment map using a similar-
ity measure (see section 3.3) (Inside-Out).

3. Establishing correspondences between 2D edges in the
initial image and 3D edges on the 3D model and deter-
mining the relative poses2 = (t2, r2) and its associ-
ated error distribution (see section 3.4).

4. Statistical fusion of the two positional estimates
(s1, s2) from outside-in and inside-out cameras tos
using their uncertainties (see section 3.2).

5. Go back to step 2 unless one of the following termina-
tion criteria is reached:

(a) The displacement between image and model data
is smaller thanε.

(b) The change in motion parameters estimated in
two consecutive iterations is smaller than∆ε.

(c) The maximal number of iterations is reached.

The thresholdsε and∆ε defined in the termination cri-
teria depend on two requirements: First, the required preci-
sion of the initial pose for a successfull feature based track-
ing system which depends on the tracking solution used,
and second, the time required for initialization which de-
pends on the application the tracker is used for.

The system provides the uncertainty of the estimated
pose in form of covariance matrix. The next section de-
scribes how the error estimation and propagation through
different coordinate systems is done.

3.1 Error Estimation and Propagation

We assume that the noise in the image points is inde-
pendent and its distribution is known by a covariance ma-
trix Λpp. Based on the edge detection algorithm used the
covariance matrixΣpp could be estimated often based on
the entries of the Hessian [22]. The uncertainty of the pose
is represented by a6 × 6 covariance matrixΛss. It is de-
fined asΛss = E(∆s∆st), the expectation of the square of
the difference between the estimateds̃ and the true values
s = s̃ + ∆s.

To compute the covariance matrixΛss the nonlinear
function f is linearized at the estimated poses̃ [10]. The
Taylor series expansion gives after neglecting terms of the
second and higher order:

pi + ∆pi = f(Pi, s̃ + ∆s) ≈ f(Pi, s̃) + Ji∆s,

whereJi =
∣∣∣∂f

∂s

∣∣∣t
Pi,s̃

is the Jacobian off evaluated at

(Pi, s̃). Sincepi ≈ f(Pi, s̃), we get

∆pi = Ji∆x.

Stacking all the equations forn points yields∆P = J∆s.
This equation can now be solved for∆s in a least squares
manner as∆s = (J tJ)−1J t∆P . The covariance matrix is
calculated by substituting∆s:

Λss = E(∆s∆st)
= (J tJ)−1J tE(∆P∆P t)((J tJ)−1J t)t. (4)

Since we assume that the errors in image points are not cor-
related we haveE(∆pi∆pj) = 0, for i 6= j. Therefore
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ΣPP is a diagonal matrix containingΣpp as diagonal ele-
ments. Using equation (4) the uncertainty of the pose can
be estimated as a covariance matrix in the respective camera
coordinate system.

Having different coordinate systems (see Fig. 3), we
need to transform the covariance matrix properly to the
same unit coordinate system. Propagating uncertainty in
general through different functions is described by theerror
propagation law[12]. Given the posex and its covariance
matrix Λxx, let y = g(x) = TB

A x be the function which
transformsx form coordinate systemA to y in coordinate
systemB. The covariance matrix ofy can then be calcu-
lated by

Λyy = JΛxxJ
t, with J =

∂g

∂x
. (5)

A useful representation of covariance matrices in 3D
are the error ellipsoids, assuming that the errors are jointly
gaussian. The joint probability density function (pdf) for
N -dimensional error vectorx is

p(∆x) =
1√

(2π)N |Λxx|
e−

1
2∆xtΛ−1

xx ∆x.

If the argument of the exponent is constant, the surface
of constant probability is an ellipsoid specified by the equa-
tion ∆xtΛ−1

xx∆x = c2, for a constantc. For c = 3 the
cumulative probability of the error vectorx being inside the
ellipsoid is approximately97% [10].

3.2 Fusion of Pose Estimations

The pose parameters obtained using different tracking
systems are fused in the following manner. Lets1 ands2
be the two pose vectors andΛs1s1 , Λs2s2 the respective co-
variance matrices. The combined estimates is obtained by

Figure 4. The spherical environment map.

weighting and averaging the covariance matrices [6, 10].

s = (Λ−1
s1s1 + Λ−1

s2s2)
−1(Λ−1

s1s1s1 + Λ−1
s2s2s2) (6)

Reforming this equation yields fors and its covariance
matrix

s = Λs2s2(Λs1s1 + Λs2s2)
−1s1 +

Λs1s1(Λs1s1 + Λs2s2)
−1s2,

Λss = Λs2s2(Λs1s1 + Λs2s2)
−1Λs1s1 . (7)

3.3 Coarse Registration Using Environment
Maps

In computer vision Adelson and Bergen [1, 16] assigned
the nameplenoptic function(from plenus, complete or full,
and optic) to the pencil of rays visible from any point in
space, at any time, and over any range of wavelengths. They
use this function to develop a taxonomy for evaluating mod-
els of low-level vision. The plenoptic function is a param-
eterized function for describing everything that can be seen
from the point of view of the user. From a given point of
view we can select any of the viewable rays by choosing an
azimuth and elevation angle (θ, φ). In computer graphics
terminology, the plenoptic function describes the set of all
possible environment maps for a given scene.

We first define a complete sample of the plenoptic func-
tion as a full spherical map for a given viewpoint, defined
thanks to the external outside-in tracking cameras. Having
a virtual model of the environment or the target objects, the
viewing space can be coarsely sampled and a set of spheri-
cal environment mapsM = {Mi|0 < i ≤ N} is generated.
1

1Due to the comlexity of the scene and the samle rate this can be a quite
time consuming procedure. This does not affect the computational cost of
the system since this can be done offline using a redering system.
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For the first stage of the initialization procedure the ori-
entation of user’s head is estimated as following. Given a
set of samplesM from the plenoptic function in form of
spherical environment maps, the system selects the closest
environment mapMk ∈ M. The initial view is then pro-
jected onto the spherical mapMk, and the best match rep-
resented by three rotational parameters is estimated using a
similarity measure.

Several methods has been proposed in the literature to
align two 2D images [review registration]. We use a inten-
sity based similarity measure known as the gradient corre-
lation [?]. For this purpose four gradient images are created
by horizontal and vertical Sobel templates from the respec-
tive environment map and the initial image. The normalized
cross correlation (NCC) is calculated of both horizontal and
vertical gradient images, respectively. The similarity mea-
sure value is the average of the two NCCs. We use an effi-
cient implementation for fast computation of NCC [14, 9].

Since the gradient images are used for registration we
only need to save the gradient images of the environments
maps. To reduce the amount of data storage needed for stor-
ing the gradient images Laplacian pyramid [?] can be used.
In order to speed up the searching for the highest correlation
value, the same image pyramids can be used. This results in
a hierarchical iterative registration of the initial image and
the respective spherical environment map.

Due to the uncertainty in estimating user’s viewpoint
from stationary cameras and the limited sampling rate of
the plenoptic function only a coarse pose estimation can be
achieved with the method described above. We therefor use
this estimated pose as the initial values for a second stage of
the initialization, in which a 3D-2D pose estimation method
is proposed to accurately estimate the relative displacement
of the pose.

3.4 Refined 2D-3D Registration

The coarse pose estimation brings the contour edges ex-
tracted in the initial frame close to the corresponding edges
in the respective environment map. The extracted contour
edges are represented as a set of discrete points. Using the
3D model of the scene, we can retrieve the 3D position of
the edge points on the virtual model. This section describes
how to determine the relative pose that coincides the posi-
tion of those 3D edge points on the model onto the 2D edges
points in the initial image plane, i.e. registration of 3D and
2D points. For more robustness small edges are removed by
thresholding and only dominant edges are used.

This part of the initialization procedure has to be not only
accurate, but also robust and computationally efficient.

Since we have no a-priori knowledge of correspondences
we use a 3D-2D registration algorithm based on the iterative
closest point (ICP) principle [27, 3]. It is composed of three

iterated steps, the first of which determines correspondence
candidates between 2D and 3D edge points. In the second
step a robust technique is used to discard the outliers by an-
alyzing the statistics of the distances. And finally the third
step estimates the 3D rigid transformation that minimizes
the displacement of matched points.

The next three sections describe each step of the algo-
rithm.

3.4.1 Establishing Correspondence Candidates

Since there is no distance metric relating the 2D edge points
in the initial frame to 3D edge points on the model, there is
no obvious way to directly applying the ICP principle, to
the registration of 3D model edge points to 2D image edge
points.

Let {p′j |0 < j ≤ m} denote the set of extracted 2D im-
age edge points. The correspondence candidates are chosen
in a way that both the 2D error distance between the back
projected model edge point and observed image pointsp′j
as well as the 3D distance of the model points to the projec-
tion rays ofp′j in object space is minimized.

Given the estimated pose parametersR̃ and t̃, the dis-
tance between a 3D model pointR̃Pi + t̃ to the projection
ray of the 2D edge pointp′j is due to object space collinear-
ity equation (2)

dobj(Pi,p′j) = ‖Qi − FjQi‖ =
∥∥∥(I − F ′

j)(R̃Pi + t̃)
∥∥∥ ,
(8)

whereF ′
j is the projection operator (see section ?) defined

for the image pointsp′j

F ′
j =

p′jp
′t
j

p′tj p′j
.

Analogue due to the image space collinearity equation
(1) the distance between the 2D edge point and the back
projected 3D model point on the image plane is

dimg(Pi,p′j) =

∥∥∥∥∥p′j − R̃Pi + t̃
r̃3Pi + t̃z

∥∥∥∥∥ . (9)

The smallerdobj anddimg, the more likely(Pi,p′j) rep-
resent a correct correspondence. If(Pi,p′j) and(P′

cj
,p′j)

have the same object space errordobj = d′obj then(P′
i,pi)

should be preferred becausedimg > d′img. See Figure ?. To
establish correspondence candidates for every image point
we take the model edge points with the smallest distanced
defined as the sum of the both distances in image and object
space.

d(Pi,p′j) = αimgdimg(Pi,p′j) + αobjdobj(Pi,p′j).

Since the distances in image and object space are of differ-
ent order they are weighted properly using the factorsαimg
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andαobj . For αimg = 1 andαobj = 0 only the nearest
points in the image are considered as correspodence used
by [zhang] whereas forαimg = 0 andαobj = 1 only the
nearest point in the object space are chosen as candidates
[Hager]. We use both distances to select the best matches
for this purpose.

I.e. for any 2D edge pointp′j (0 < j ≤ m), its corre-
spondence candidatePcj

is determined as

Pcj = argmincj∈{1,...,n} d(Pcj
,p′j), (10)

wherecj are the corresponding indices of the 3D model
points. The search space is determined by the size of the
model edge point setn. In order to speed up the search,
optimized K-D tree data structure can be used to accelerate
the closest point search [19, 27].

3.4.2 Estimating Motion

This section describes briefly how to re-estimate the pose
parameters that minimize the displacement between the cor-
responding edge points.

According to the ICP principle we minimize the object
space collinearity error (2) by moving the model dataPcj

such that at each step the displacement betweenpj andPcj

is minimized.
The basic idea is to reduce at each iteration the 3D-2D

registration problem to the 3D-3D registration of points by
using the 3D projection points on the respective image rays
instead of 2D image points??. For each iteration the pro-
jection points have to be determined again due the new pose
estimates.

Formally, we seek the rigid pose parametersR andt that
minimizes the following mean-squares objective function

E(R, t) =
m∑

j=1

wj

∥∥(I − F ′
j)(RPcj

+ t)
∥∥2
, (11)

subject to the orthogonality constraintRRt = I. Thewj

are positive weighting factors associated with each corre-
spondence candidate. See next section for how to choose
these weights.

For a fixed rotationR the optimal translationt can be
computed from (11) as

t(R) = (I − 1
m

m∑
j=1

F ′
j)
−1

m∑
j=1

(F ′
j − I)RPcj

(12)

The estimated rotation matrix̃R can be used as the start-
ing point and is re-estimated iteratively as follows. LetRk

be thekth estimate of R,t(k) = t(R(k)), and Q(k)
cj =

R(k)Pcj
+ t(k). The next estimateR(k+1) is determined

by

Rk+1 = argminR

m∑
j=1

wj

∥∥∥RPcj
+ t(k) − F ′

jQ
(k)
cj

∥∥∥2

,

(13)
subject toRtR = I. Such a constrained least squares prob-
lem can be solved forR(k+1) in closed form using quater-
nions [11] or singular value decomposition (SVD) [8]. For
the SVD solution, first a sample cross-covariance matrixM

betweenPcj
andL(k)

cj = F ′
jQ

(k)
cj is calculated.

M =
m∑

j=1

wj(Pcj − P̄)(L(k)
cj

− L̄(k)), (14)

where P̄ and L̄(k) are the centroids, respectively. Let
UDV t be a SVD ofM , whereU andV are orthogonal
matrices, andD is diagonal. Then the optimal solution to
(13) is

R(k+1) = V U t. (15)

The next estimate of translation is then computed by
t(k+1) = t(R(k+1)) from (12). Note, that the computa-
tional complexity at each iterationk is linear in the number
of points considered. This iterative algorithm directly com-
putes orthogonal rotation matrices, it is fast and convergent
due to the convergence theorem of the original ICP algo-
rithm [3].

3.4.3 Robust Pose Estimation

Due to both occlusion and inaccuracy in pose estimation,
correspondence candidates(p′j ,Pcj

) established in the sec-
tion 3.4.1 are not guaranteed to be correct. There are two
types of outliers (wrong matches). The first is wherePcj

is not the corresponding 3D model point, while the correct
correspondence exist. The second is a match where the cor-
resondencing point is not included in the set of 3D model
points.

A large number of algorithms described above have been
developed to quantitatively evaluate the 2D-2D or 3D-3D
point matches. In this section we describe a novel approach
to evaluate the 3D-2D point matches based on a statistical
model.

The equation (2) and (1) essentially describe an ob-
ject space and an image space collinearity constraint. The
former means that the image pointp′j , the projection of

R̃Pcj + t̃ on p′j and the optical centerO of the camera
are in as collinear as possible. The latter constraint means
that the the image pointp′j , model pointPcj

and projection
center are collinear.

These two constraint imply that collinearity error both in
object spacedobj (8) and in image spacedimg (9) should be
minimized.
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These constraints represent necessary conditions for a
pair of 2D-3D edge points to be correct. If a candidate
does not satisfy any of these constraints, it can not be a
correct one. Thus, we use these constraints as a quality
measurement of correspondence candidates from which rel-
atively good matches can be selected and used for pose re-
estimation.

Based on the point matches the meansµdobj
andµdimg

and standard deviationsσdobj
andσdimg

are computed. De-
pending on these values we reject outliers:

if (
∣∣dobj(p′j ,Pcj )− µdobj

∣∣ > κobjσdobj
or∣∣dimg(p′j ,Pcj

)− µdimg

∣∣ > κimgσdimg
)

thenwj = 0. (16)

wherewj is a weighting factor introduced in equation (11).
The maximum tolerance parametersκobj andκimg repre-
sent how many per cent of matches are cosidered as outliers
and rejected. For a parameter value of 1.0 appriximately
68% of matches lying in the interval[µ − σ, µ + σ] are
taken into account and the rest is rejected as outliers. For
a value of 3 all the matches are used for motion estima-
tion. The maximum tolerable distances in image and object
space can be detemined based on the maximal motion ex-
pected. They can be chosen properly based on the scene
depth and sampling rate of the plenoptic function. This val-
ues have an impact on the convergence of the algorithm. If
they are too small, more iterations are required for the algo-
rithm because many good correspondence candidates will
be discarded.

As a result of this procedure, a set of refined correspon-
dences will be obtained.

Another problem that arises with the solution described
in the previous section is that if the image points are per-
turbed by homogeneous gaussian noise, the pose solution
will implicitly more heavily weight model points that are
farther away from the camera, since thedobj increases with
distance of the model point to the camera. Supposing
that the residual error, i.e. the distancedobj is approxi-
mately proportional to the depth and equal for all points,
the weightswj can be chosen as

wj =
1

(Z(k)
cj )2

, (17)

whereZ(k)
cj is the depth of each model pointQ(k)

cj in the
camera coordinate system [15].

4. Experimental Results

The proposed registration algorithm has been tested in
a number of both simulated and real scenes and the regis-
tration accuracy was analyzed. Because of lack of space we
present the results of the real experiments in this paper only.

HMD (Sony Glasstron)

FireWire camera (FireFly2)

Retroreflective spherical marker

(a)

(b)

Figure 5. The Experimental Setup.

The registration algorithm has been implemented in Mat-
lab on a 2GHz Pentium 4 CPU, with 1.0 GB RAM. The
code is not optimized yet because we are in testing and eval-
uation phase. The algorithms are however designed with
particular attention to real-time requirement.

In our experimental setup (see Figure 5(a)) a FireWire
(IEEE-1394) digital camera (FireFly2 from Point Grey) was
mounted on the optical see-through HMD (Sony Glasstron).
We used a 4 mm wide angle lens with a field-of-view of 68
degrees for the experiments. The camera was internally cal-
ibrated and lens distortion was corrected using the camera
calibration toolbox [4].

For evaluation purposes we use the A.R.T. [2] outside-in
tracking system in our AR lab to track the position of the
user’s viewpoint. Thereby, a small retroreflective spherical
marker is attached to the mobile camera (see Fig. 5(b)),
which was then tracked by three ART cameras hanging in
the corners of our lab. The tracking data were sent via
wireless LAN to the mobile computer with the application
running. In the future this marker-based system will be re-
placed by a marker-less head tracking system using station-
ary smart cameras.

As an AR scenario, we used a control unit box provided
by Siemens Automation as the target object. We created
an accurate 3D model of the box using the software Image-
Modeler from RealViz [20] (see Fig. 6(a)). ImageModeler
uses photographic images taken from the object to recover
the 3D geometry and maps automatically the original im-
ages onto the model’s surface as texture maps, resulting in
a highly realistic model.

The pose of the box in the room was determined by plac-
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(b) Cylinderical environment map

(c) Best match of the initial image on the environment map

(d) Initial image (e) Virtual camera view

(a) 3D model

Figure 6. The coarse registration.

Initial pose after coarse registration After 3 iterations

After 6 iterations After 25 iterations

Number of iterations
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Figure 7. Aligned model edges with the edges
of the initial image.

ing a ART-target at a fix position on the box. The transfor-
mation between the ART marker coordinate frame and the
model frame was calculated by measuring the 3D coordi-
nates of some points on the box in model and marker coor-
dinate frame respectively. From those correspondences the
transformation parameters were calculated. This step needs
to be done only once when the box is moved relative to the
ART tracking cameras.

For projecting a complete plenoptic sample the most nat-
ural surface would be a unit sphere centered about the view-
ing position (see section 3.3). However, the difficulty of
spherical projections is the lack of a representation that is
suitable for data storage, particularly for a uniform discrete
sampling [16]. We have therefore chosen to use a cylindri-
cal projection as the plenoptic sample representation. The
advantage of a cylinder is that it can be easily unrolled into
a simple planar map.

Figure 6(b) shows a cylindrical environment map of the
box as a sequence of images taken from panning the virtual
camera 360 degrees around the optical axis. Thereby the
internal parameters of the virtual camera are identical to the
real camera used.

The viewing space in front of the virtual box was sam-
pled automatically every 5 cm in each space direction, re-
sulting in a total set of 1080 environment maps, where only
the respective gradient images were stored.

Figure 6(d) shows the initial image of size320 × 240
taken by the mobile camera after the lens distortion correc-
tion.

Using the A.R.T. outside-in tracker the position of the
marker attached to the camera was determined and the near-
est environment map was selected automatically. At a range
of 1.5 m, the stated RMS (root mean square) accuracy by the
manufacturer of locating a single ART marker is 0.5 mm in
all directions. Since the marker is about 3.5 cm away from
the camera, we assume the positional error is about 4 cm.

In our experiments with three tracking cameras, the posi-
tional uncertainty could be modeled with an error ellipsoid
of the form of a sphere since the variaitions are not statisti-
cally significant in this study.

A coarse estimation of the orientation was then done by
finding the best match of the initial image in the respective
environment map (see Figure 6(c)). From the position of the
best match the azimuth and elevation angle were derived. In
our experiments elevation and the rotation angle (around the
optical axis of the camera) are considered to be small. Up
to a maximum variation of±30 degrees the correct match
could be found properly using the NCC measurement (see
section 3.3).

The view of the virtual camera with the coarse orienta-
tion is shown in Fig. 6(e). The extracted edges of the virtual
camera image are superimposed in Fig. 7(a) on the initial
image. The final displacement is then estimated using the
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Initial pose after coarse registration After 3 iterations

After 10 iterations After 29 iterations
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Figure 8. Aligned model edges with the edges
of the initial image.

method described in section 3.4. For this purpose the mo-
tion between the 2D edges in the initial image and 3D edges
on the model is estimated.

Figure 9(a)-(d) shows the procedure of the iterative reg-
istration of the 3D edges with 2D edges. Figure 9(e) shows
a plot of the the object space errordobj defined in (8), during
the pose estimation process. We observe a fast convergence
of the algorithm during the first iterations that slows down
as it approaches its minimum.

The uncertainty of the final pose derived from the mo-
bile camera was then estimated as a covariance matrix as
described in section 3.1. The maximum translational error
along the line of sight is about 21 mm. The error ellipsoid
of the overall estimation after fusion has a major axis of 1.6
mm.

Figure 8 and 9 show the registration process of two dif-
ferent initial views of the target object.

5. Conclusions and Future Work

We presented a sensor fusion approach for automated
initilization of marker-less tracking systems. This was
achieved by analyzing and estimating the error of tracking
sensors. The uncertainty of the tracking sensors is repre-
sented by covariance matrices and can be visualized as 3D
ellipsoids. The initial pose was then estimated iteratively
with a coarse to fine strategy by taking the uncertainties into
account. We applied the method to a an augmented reality

Initial pose afer coarse registration After 3 iterations

After 5 iterations After 21 iterations

O
bj

ec
t s

pa
ce

 e
rr

or

Number of iterations

Figure 9. Aligned model edges with the edges
of the initial image.

system using mobile and stationary cameras.
The pose parameters are estimated in two estimation and

refinement steps. Thereby the second step is independent
of the first one and can converge in worst case to a wrong
local minimum. This can be prevented in a future work
by considering the positional uncertainty drived from the
stationary cameras during the refined pose estimation step.

The pose refinement in the second step is based on
minimizing the object space collinearity errors. A more
effiecient and maybe faster solution could be the minimiza-
tion of both object and image space collinearity errors si-
multanously.
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