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Abstract. 3D freehand ultrasound imaging is a very promising imag-
ing modality but its acquisition is often neither portable nor practical
because of the required external tracking hardware. Building a sensor-
less solution that is fully based on image analysis would thus have many
potential applications. However, previously proposed approaches rely on
physical models whose assumptions only hold on synthetic or phantom
datasets, failing to translate to actual clinical acquisitions with suffi-
cient accuracy. In this paper, we investigate the alternative approach of
using statistical learning to circumvent this problem. To that end, we
are leveraging the unique modeling capabilities of convolutional neural
networks in order to build an end-to-end system where we directly pre-
dict the ultrasound probe motion from the images themselves. Based
on thorough experiments using both phantom acquisitions and a set of
100 in-vivo long ultrasound sweeps for vein mapping, we show that our
novel approach significantly outperforms the standard method and has
direct clinical applicability, with an average drift error of merely 7% over
the whole length of each ultrasound clip.

1 Introduction

Ultrasound imaging (US) is one of the main medical modalities for both diag-
nostic and interventional applications thanks to its unique properties - afford-
ability, availability, safety and real-time capabilities. For a long time though, its
inability to acquire 3D images has reduced its range of clinical applications. The
workaround was to acquire a series of 2D images by sweeping over the region
of interest and combining them into a single volume afterwards. This solution
requires the knowledge of the relative position from one image to the next. Ex-
ternal sensor-based solutions (typically optical or electromagnetic) are only able
to provide a good estimate of the probe position at the expense of practicality
and price, while motorized or 2D array transducers have a limited field-of-view
and are also quite expensive.

Thus, a significant amount of research has been dedicated at solving this
problem without additional hardware by estimating the relative position of two
images with pure image processing algorithms. While the in-plane motion can be



recovered quite reliably with algorithms like optical flow [1], the biggest challenge
is to estimate the out-of-plane motion (often called elevational displacement).
The reference approach exploits the very particular speckle noise patterns that
are visible in ultrasound images, and is thus called speckle decorrelation [2, 3].
It is based on the fact that the US intensities undergo a point-spread function
not only in the image plane but also in the perpendicular direction. This means
that the speckle patterns of two successive frames have a strong correlation: the
higher the correlation, the lower the elevational distance. Unfortunately, this
relationship is far from trivial and a lot of papers have proposed various models
based on the physical and statistical properties of the image acquisitions [2, 4].
While those methods produce fairly accurate estimates on synthetic data, they
do not seem to have translated into commercial solutions or clinical trials. Even
very recent papers [5, 6] provide almost no quantitative experiments on real data.

In order to alleviate the limitations of the current models, several studies have
proposed to incorporate some machine learning components into the workflow,
either to refine the model [4] or to detect uncertainties in the estimates [7, 6].
Yet, surprisingly no work so far has aimed at bypassing the whole speckle decor-
relation model with a fully machine learning-based approach. This is probably
due to the extreme difficulty of the problem, and the definition of meaningful
image features. Recently though, deep learning approaches - and more particu-
larly convolutional neural networks - have proven successful at solving even the
most challenging image analysis problems [8].

In this paper, we hence investigate the use of deep learning for the estimation
of relative motion between US images. We propose an end-to-end approach based
on a convolutional neural network (CNN) that directly learns the relative 3D
translations and rotations from a pair of images, and also suggest refinements
to further improve the transformation estimates (Section 2). For the first time
to our knowledge, we perform an extensive evaluation on 120 real US datasets
including 100 acquired in clinical conditions (Section 3). Those experiments show
that our method significantly outperforms the standard approaches and allows
us to reconstruct long US sweeps with a very limited drift.

2 Methods

2.1 From speckle decorrelation to convolutional neural networks

Speckle patterns are seemingly random reflecting tissue inhomogeneities smaller
than the ultrasound wavelength. Their partial correlation in successive US frames
is exploited in the speckle decorrelation method as follows. The images are first
divided into non-overlapping patches. Then the normalized cross-correlation be-
tween each patch of the first image and a set of patches from the second image
in its neighborhood is computed. For every patch, the displacement that gives
the best correlation is stored, which yields a 2D displacement map representing
the in-plane motion. In order to retrieve the out-of-plane component of the local
displacements, the maximum correlation value is used, which can be mapped
to the elevational displacement using a statistical and physical model (see [2]
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Fig. 1. Workflow comparison of speckle decorrelation (top) and convolutional neural
network (bottom) for the estimation of the transformation parameters between two
successive images. Related steps in the two approaches have the same color.

for instance). Unfortunately such models are only valid under Rayleigh scatter-
ing conditions, which means that only a subset of the patches - that also has
to be automatically detected - may be used. Finally, a vector of parameters
p = [tx, ty, tz, θx, θy, θz]> representing a rigid transformation T(p) with t and
θ the translational and rotational components is fitted to the 3D vector field,
usually with a robust algorithm in order to minimize the influence of outliers.

Trying to mimic this elaborate approach with a single CNN might seem
overly ambitious or lead to uninterpretable results. Yet, as we show in Figure 1,
it turns out that the two approaches do share some similarities. The analogy
is far from perfect, but we believe that it gives some insight on why it makes
sense to use a CNN. On the one hand, the basic steps of both approaches can
be related: (i) the local cross-correlation operation may be approximated by a
set of convolution filters, (ii) the patch-based approach that aggregates local
information corresponds to the pooling layers of the network, (iii) the selection
of reliable speckle features and areas in the image could be achieved via the
activation layers. On the other hand, the more complex steps of the pipeline (the
decorrelation model, the robust transformation fitting, etc.) are now replaced
with a combination of non-linear operations whose modeling capabilities exceed
all physical models but are more prone to overfitting. A strategy to alleviate this
risk by adding simple and reliable prior information is proposed in Section 2.2.

We used a standard convolutional neural network architecture described in
Figure 2. In all our experiments, the machine learning models are trained and
tested using 2-fold patient cross validation for each dataset separately. Our algo-
rithms are implemented in C++ and we used the Caffe framework for the deep



INPUT
128× 128× 2/4

Conv. 5× 5 (64)
+ ReLU

Conv. 5× 5 (64)
+ ReLU

MaxPooling
(2× 2)

Conv. 3× 3 (64)
+ ReLU

Conv. 3× 3 (64)
+ ReLU

MaxPooling
(2× 2)

FullyConn. (512)
+ ReLU

FullyConn. (6)
OUTPUT

loss function Euclidean dis-
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solver AdaGrad optimizer,
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momentum 0.9
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weight decay none
weights init. Gaussian

(mean 0.0, std 0.01)
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Fig. 2. Architecture of our convolutional neural networks and training parameters. All
convolutions and pooling layers have a stride of 2 pixels.

learning components. Predicting the tracking of a whole sweep takes around
5 seconds on a standard computer with an NVIDIA GeForce GTX 1080 GPU.

2.2 Using optical flow as additional information

Even if neural networks are supposed to discover all necessary image features by
themselves, the end-to-end problem that we are addressing remains quite chal-
lenging. One way of helping the network is to provide an estimate of the in-plane
motion. While Dosovitskiy et al. have recently shown that neural networks are
able to learn in-plane displacements [9], we hypothesize that by pre-computing
an estimate of the in-plane displacement, we allow the neural network to focus
on the most important part, namely the out-of-plane motion estimation.

We therefore compute a sub-pixel dense optical flow [1] and use this as addi-
tional channels of the images. Our network input now actually has 4 channels:
the first two being the two successive images and the last two being the two
components of the estimated vector field. Our experiments will show that this
trick has a significant impact on the performance.

3 Experiments and results

Datasets acquisition and baseline methods. All sweeps used in our exper-
iments were captured with a Cicada-64 research ultrasound machine by Cepha-
sonics (Santa Clara, CA USA). We used a linear 128-element probe at 9MHz
for generating the ultrasound images. The depth of all images was set to 5cm
(with a focus at 2cm) and 256 scan-lines were captured per image. We used the
B-mode images without any filtering or back-scan conversion, resampled with an
isotropic resolution of 0.3 mm (this value was chosen to match the speckle scale,
and we confirmed by cross-validation that this was indeed a suitable choice).

The probe was equipped with an optical target which was accurately tracked
by a surgical system (Stryker Navigation System III). After thorough spatial
and temporal image-to-sensor calibration, we were able to get a ground truth
transformation with absolute positioning accuracy of around 0.2 mm according



to our tests. Since the ground truth has to be extremely precise from frame-to-
frame, we also assured the temporal calibration exhibits neither jitter nor drift
at all, thanks to the digital interface of the research US system and proper clock
synchronization. Our experiments are based on three different datasets:

– a set of 20 US sweeps (7168 frames in total) acquired on a BluePhantom
ultrasound biopsy phantom. The images contain mostly speckle but also a
variety of masses that are either hyperechoic or hypoechoic;

– a set of 88 in-vivo tracked US sweeps (41869 frames in total) acquired on the
forearms of 12 volunteers. Two different operators acquired at least three
sweeps on both forearms of each participant;

– another 12 in-vivo tracked sweeps (6647 frames in total) acquired on the
lower legs on a subset of the volunteers. This last set will be used to assess
how the network generalizes to other anatomies.

The forearm and leg anatomy was chosen with the clinical application of pe-
ripheral vein mapping for bypass surgery or AV-fistula mapping in mind, which
requires elongated sweeps to visualize vascular topology across a limb.

All sweeps have been acquired in a fixed direction (proximal to distal). This
means that applying our algorithm on a reversed sweep would yield a mirrored
result. However this limitation is not specific to our method, but is due to the
problem in general being ill-posed. Besides, we believe that enforcing the acqui-
sition direction of the sweeps is not a major constraint for the clinician.

We compared our algorithm to two baseline methods:

– a linear motion, which is the expected motion of the operator. This means
that we set all parameters to their average value over all acquisitions: ro-
tations and in-plane translations are almost zero while elevational transla-
tion tz is constant around 2cm/s;

– the result of our implementation of a speckle decorrelation method: we filter
each image to make the speckle pattern more visible as in [10], we divide each
image in 15 × 15 patches and compute the corresponding patch-wise cross-
correlations. We then use a standard exponential-based model to deduce the
corresponding z-displacement from the correlation values (we were not able
to fit more complex models). Finally we use RANSAC to compute a robust
fit of the 6 transformation parameters to the displacement field.

Methods comparison. For each method and dataset, we compute error metrics
on all transformation parameters but also in terms of final drift. Those numbers
are reported in the first two tables of Figure 3 for the phantom acquisitions and
the forearms dataset; the conclusions are similar for both datasets.

We first notice that assuming a perfectly linear motion gives the worst results
of the four methods, which is mainly due to the out-of-plane translation tz. This
was expected since this component had the largest variability (it is easier for
the operator to keep the US images parallel than to keep a constant speed). The
speckle decorrelation approach does manage to significantly reduce all estimation
errors by exploiting the correlations between the frames; nevertheless the out-
of-plane error on tz and therefore the overall drift is still quite high. On the



Table 1 avg. absolute error (mm/◦) final drift (mm)
phantom dataset tx ty tz θx θy θz min med. max

linear motion 2.27 8.71 38.72 2.37 2.71 0.97 2.29 70.30 149.19

speckle decorrelation 4.96 2.21 29.89 2.10 4.46 1.93 12.67 47.27 134.93

standard CNN 2.25 5.67 14.37 2.13 1.86 0.98 14.31 26.17 65.10
CNN with optical flow 1.32 2.13 7.79 2.32 1.21 0.90 1.70 18.30 36.90

Table 2 avg. absolute error (mm/◦) final drift (mm)
forearms dataset tx ty tz θx θy θz min med. max

linear motion 4.46 6.11 24.84 3.51 2.59 2.37 10.11 46.23 129.93

speckle decorrelation 4.36 4.09 18.78 2.53 3.02 5.23 9.19 36.36 98.95

standard CNN 6.30 5.97 6.15 2.82 2.78 2.40 3.72 25.16 63.26
CNN with optical flow 3.54 3.05 4.19 2.63 2.52 1.93 3.35 14.44 41.93

after speckle filtering 3.57 3.59 8.56 2.56 2.64 2.01 5.14 22.04 44.15

Table 3 avg. absolute error (mm/◦) final drift (mm)
lower legs dataset tx ty tz θx θy θz min med. max

linear motion 4.49 4.84 39.81 4.39 2.18 2.46 37.35 73.40 143.42

speckle decorrelation 5.02 2.87 30.89 1.82 1.78 4.11 43.21 54.74 89.97

standard CNN 5.34 5.62 17.22 2.58 2.45 2.84 21.73 43.21 65.68

CNN with optical flow 4.14 3.91 17.12 1.94 2.58 2.15 25.79 40.56 52.72

CNN trained on legs 3.11 5.86 5.63 2.75 3.17 5.24 8.53 19.69 30.11

Fig. 3. Summary of the performance of the different methods on the three datasets.
The parameter-wise errors are computed and averaged for every frame with respect to
the first frame of the sweep. The final drift is defined as the distance between the last
image center with the estimated tracking and ground truth.

other hand, the standard CNN without the optical flow channels is here able to
produce results that are already better than the other approaches. One can notice
though that the tx and ty errors are slightly higher than the speckle decorrelation
method, especially on the forearm sweeps. Our guess is that the network focuses
its effort on the tz component because it represents the main part of the motion;
learning the whole transformation more accurately would probably require a
deeper network and a larger dataset. This can be fixed by adding the optical
flow as input channels. We indeed see that tx and ty for instance are better
estimated; the estimation of tz is even further improved because the network
can focus on the out-of-plane motions. In average, we observe on real clinical
images a final drift of merely 1.45 cm over sequences longer than 20 cm, which is
twice as accurate as speckle decorrelation. The hierarchy of the methods (linear<
speckle decorrelation < standard CNN < CNN with optical flow) was confirmed
by paired signed-rank Wilcoxon tests which all yielded p-values lower than 10−6.

In order to further demonstrate the efficiency of our method for out-of-plane
estimation, we have recorded a separate sweep with a deliberately strongly vary-
ing speed and plotted the different predictions of the elevational translation in
Figure 4. The first 100 and last 150 frames were recorded at an average speed of
0.3 mm/frame, while inbetween the speed has almost been doubled. Naturally,
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Fig. 4. Elevational translations tz predicted values with different methods on an ultra-
sound sweep deliberately acquired with a strongly varying speed.

Fig. 5. Comparison of the trajectories reconstructed with different methods. This sam-
ple case corresponds to the median case in terms of estimation accuracy.

the linear motion method assumes a constant speed and will therefore yield
major reconstruction artifacts. The speckle decorrelation approach does detect
a speed change but strongly underestimates large motions. Only the neural net-
work is able to follow the probe speed accurately. A qualitative comparison of
the reconstructed trajectories on a sample sweep is also shown in Figure 5.
Influence of the noise filtering. In order to test the importance of the speckle
noise, we compared the methods when applied on the images before and after
applying the speckle filter built in the Cephasonics ultrasound system. As we can
see in the last row of Table 2, learning and testing on the unfiltered images yields
better tracking estimation. Speckle patterns are therefore important for the neu-
ral network, in particular for the estimation of the out of plane translation. This
result therefore tends to validate the intuition of the research community that
speckle is indeed important, but not necessary since using the CNN on filtered
images already gives better results than the other methods.
Generalization to other anatomies. Another interesting question is to assess
how well such a network can generalize to other applications: does it really learn
the motion from general statistics, or does it overfit to some anatomical struc-
tures present in the image? The results reported in Table 3 show a significant
degradation of the results for all methods (since they all have been calibrated
and learned on the forearms dataset). The in-plane displacements are still re-
covered with a similar accuracy but the error on the out-of-plane translation tz
has strongly increased. However, we can notice that our CNN-based method still
generalizes better than the others to a new kind of images. This preliminary ex-



periment shows that the accuracy is strongly dependent on the target anatomy
but gives hope regarding the capabilities of our network. For comparison, we
also report the accuracy obtained with a CNN trained on this specific dataset,
which is only slightly worse than on forearms (due to the smaller dataset size).

4 Conclusion

This paper introduced a sensorless 3D ultrasound system with a tracking esti-
mation based on deep learning. We showed how CNNs relate to the standard
method of speckle decorrelation but offer a much stronger complexity that is able
to learn the relationship between speckle and out-of-plane motion. Our evalua-
tion, the first one on such a large dataset, showed great results (7% drift wrt.
the sweep length) for peripheral vein mapping.

We believe that our work paves the way for many further clinical appli-
cations where reconstructing 3D volumes from standard 2D ultrasound clips
may be valuable. The reconstruction error may then also be further reduced by
restricting the imaging protocol or adding redundant information from perpen-
dicular clips or panoramic stitched data to use during 3D pose estimation. It
would also be interesting to investigate the dependency on ultrasound system
parameters (probe, depth, frequency, etc). Last but not least, we also plan to
try more complex network like recurrent neural networks.
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