
Spatial Relationship Patterns:
Elements of Reusable Tracking and Calibration Systems

Daniel Pustka∗ Manuel Huber Martin Bauer Gudrun Klinker

Technische Universität München, Fakultät für Informatik
Boltzmannstraße 3, Garching bei München, Germany

ABSTRACT

With tracking setups becoming increasingly complex, it gets more
difficult to find suitable algorithms for tracking, calibration and sen-
sor fusion. A large number of solutions exists in the literature for
various combinations of sensors, however, no development method-
ology is available for systematic analysis of tracking setups.

When modeling a system as a spatial relationship graph (SRG),
which describes coordinate systems and known transformations, all
algorithms used for tracking and calibration correspond to certain
patterns in the graph. This paper introduces a formal model for
representing such spatial relationship patterns and presents a small
catalog of patterns frequently used in augmented reality systems.
We also describe an algorithm to identify patterns in SRGs at run-
time for automatic construction of data flows networks for tracking
and calibration.

Keywords: Tracking, Calibration, Ubiquitous Tracking, System
Design

1 INTRODUCTION

Tracking for augmented reality requires the use of many different
coordinate systems. Even in small setups we have camera coor-
dinates, object coordinates, relative object coordinates and many
more. As the trend goes to increasingly larger systems using two
and more different tracking systems or even Ubiquitous Tracking
installations [26] with many distributed sensors, this poses new
challenges to engineers who have to set up and maintain such envi-
ronments.

1.1 Motivation

In all these installations the same problems have to be solved: prop-
agating subsequent coordinate transformations, combining differ-
ent trackers for higher accuracy, calibration of unknown transfor-
mations and computing the display relative coordinates that are re-
ally needed to present the information.

For most tasks, a large number of algorithms can be found in the
literature that describe solutions for various combinations of sen-
sors. In most cases, the same problem is solved by many different
algorithms which have different properties with respect to perfor-
mance, accuracy or robustness. Additionally, the algorithms are in
general not separated as stand-alone algorithms but embedded in ei-
ther their specific application or a larger algorithm. Sometimes even
different names for the same problem exist in different communi-
ties making it harder for someone not familiar with the problem to
find the best solution.

∗e-mail: daniel.pustka@in.tum.de

While the manual selection of algorithms is feasible in small
static setups, we want to move toward larger distributed Ubiquitous
Tracking systems that allow the introduction or removal of sensors
and trackable objects at runtime. For example, a mobile setup, con-
sisting of both cameras and trackable objects, can be brought into an
instrumented environment for simultaneous inside-out and outside-
in tracking. In such a scenario, the system infrastructure needs to
react in a short time and compute a data flow that integrates the
measurements from mobile and stationary sensors to satisfy the re-
quirements of the application. In general, the tracking middleware
responsible for this task has the same problem as the engineer in
that is has to combine algorithms from a library to find a solution
for the application.

1.2 Goals

Building augmented reality tracking setups requires up to now a
lot of special knowledge and design experience. An experienced
engineer who is familiar with a variety of possible solutions for
common subproblems can easily apply these solutions to the overall
setup without having to rediscover them.

In this paper we present new well-defined design structures that
facilitate the reuse of a successful implementation for a new setup.
By introducing a formalism for modeling complex setups, com-
bined with a graphical signature of tracking algorithms, this leads
to a systematic way of building augmented reality tracking setups
by a clever combination of atomic parts.

Like software engineering has moved from trial-and-error to
modeling and specification, and computer graphics has moved from
programming every single primitive to declaring complex scenes,
we want to make the step from reimplementing calibration and
tracking algorithms to the automatic generation of the required data
flow and algorithms from a declaration of the setup.

Having introduced a formal way of specifying both tracking se-
tups and algorithms, we can go further and build systems that auto-
matically combine known algorithms to support tracking and cali-
bration by dynamically reconfiguring sensor environments.

1.3 Related Work

Scene graphs have been a well-known concept since the SGI IRIS
Inventor in 1992 [11] and a variety of similar implementations ex-
ist. Attempts were made to extend the usage of scene graph APIs
to tracking and calibration [25, 14] but showed to be not sufficient.
The main difference is the strict tree-like structure of scene graph
APIs which is not compatible with the general graphs needed for
tracking setups [26]. The closest implementation to the concepts
described in this paper is the OpenTracker framework [21] for the
connection of various tracking hardware. However, in the current
version this applies only to static setups and calibration is not sup-
ported.

Some approaches claim to generally solve the calibration prob-
lem [24] but they usually focus on one mathematical tool for cal-
ibration. In contrast to that we try to give a general description
of a problem with all possible solutions from the literature. The

engineer searching for a solution of the problem can then choose
the best fitting algorithms for his specific application. Section 4.2
shows an example where several solutions are possible.

Our first approach to generating data flows in Ubiquitous Track-
ing setups was based on a distributed path search in spatial rela-
tionship graphs using the Bellman-Ford algorithm [26]. It proved
to be highly useful in both small and large tracking arrangements,
however, usage is limited to sensors providing 6DOF tracking infor-
mation. We see parts of this paper as a continuation of our previous
work, which allows the integration of a broader range of sensors,
such as cameras providing 2D measurements.

2 SPECIFICATION OF TRACKING SETUPS

Before we go into details of some actual tracking patterns we first
need to specify the input parameters. Every tracking setup can be
described — and this is in fact usually done already [13] — as a
graph where the nodes represent coordinate systems or orientation-
free points on real or virtual objects and the edges represent trans-
formations between the coordinate systems. We call this graph the
Spatial Relationship Graph (SRG) [26].

The spatial relationship graph specifies all relevant properties of
the tracking setup. Therefore the edges are not only 6D transforma-
tions but do have other attributes, most importantly the accuracy of
the measurement, but also including any other property needed for
the setup. For our system of patterns, we use the concept of the spa-
tial relationship graph with the following assumption: The edges of
the graph describe availability of measurements, not actual values.

While for many edges in the spatial relationship graph we have
actual measurements of the transformation, in most applications we
need the values of an edge that we can not directly measure but
rather have to infer indirectly from the topology of the graph and
the values of other edges. The spatial relationship patterns describe
algorithms to solve subproblems on the way to computing the actual
desired value.

2.1 Example Setup

The further concepts of the spatial relationship graph are explained
with the example setup depicted in figure 1. The setup contains
an HMD, to which an infrared camera is attached for inside-out
tracking of five retro-reflective markers in a known and rigid ar-
rangement. This marker defines the world coordinate system, in
which the augmentation is to be displayed. For outside-in tracking,
an commercial infrared camera system1 is used, which tracks the
world marker as well as another one attached to the HMD. In an
approach similar to [18], the outside-in and inside-out trackers are
to be combined to deliver improved accuracy and robustness in case
one tracking system fails.

When the system is in operation, the tracking infrastructure
needs to provide the transformation between the HMD image plane
and the augmentation, in order to display a virtual object at a fixed
location in the real world. In reality, the projection matrix of the
HMD (the edge between the image plane and the camera) is stati-
cally loaded into the renderer, and only the transformation from the
camera to the augmentation is tracked in real-time. In terms of the
SR graph, the engineer setting up this system has to find a way to
indirectly infer the edge connecting these two coordinate systems.

2.2 Edge Types

When specifying tracking setups as a spatial relationship graph,
there are different kinds of edges which need to be distinguished:

1DTrack by Advanced Realtime Tracking GmbH (A. R. T.)

Data type Different algorithms need different input data
types. Possible data types in common setups are 6D transforma-
tion, 3D translations, 2D translations or 3D→2D projective trans-
formations. Other types of measurements, such as 1D distances or
3D orientations are also imaginable, but not used for the patterns
presented in this paper. In the graphical description we write the
data type of the measurement as a label to the edge, in this example
a 6D edge from A to B.

In our example setup (fig. 1), the ART tracker is a closed sys-
tem; therefore we model its measurements as 6D edges, although
internally, the 2D-3D Triangulation and 3D-3D Pose Estimation
patterns, explained later on, are used. The camera on the HMD,
however, is home-made; therefore, we model both the projective
parameters and the single 2D measurements as edges in the spatial
relationship graph.

Static/Dynamic In a graph there can be edges that do not
change their values since they are for example describing two ob-
jects that are rigidly connected to each other, or are assumed to stay
constant during during the runtime of the application. We call these
edges static in contrast to the dynamic edges which may change at
any instant in time like for example tracked relationships.

In the graphical description we denote static edges with the key-
word static. Note that edges that are not required to be static may
still sometimes be static, for example if a tracked relationship does
not change at runtime. As we will see in section 3.3, the infor-
mation that relationships are static forms an important part of the
system description, which allows for many optimizations.

In the example setup, both the ART system and the world target
are fixed in the room, and the relationship between the two can be
considered static. Other static relationships are a result of their rigid
constructions, such as the retro-reflective balls F1−5 on the world
target or the image plane inside the camera.

Measured/Inferred Measured relationships are measure-
ments that are either known, given from a tracking system or from
some other data flow component (e.g. a database), while inferred
relationships are derived from other measurements by an algorithm.
In the context of spatial relationship patterns, measured relation-
ships form the underlying basic SRG while inferred measurements
are derived via pattern applications, but, from an information-
theoretic point of view, do not add new information to the graph.

2.3 Formalism

Formally speaking we can define a spatial relationship graph as a
graph G = (V,E) on the node set V of all real or virtual objects and
with edge set E ⊆V ×V of directed spatial relationships. Note that
we allow E to be a multiset, as we allow multiple edges between
nodes. Over the edge set E we define a number of functions such as
type : E 7→ {6D,3D,3D→2D, . . .}, static : E 7→ {static,dynamic}
and in f erred : E 7→ {measured, inferred} to represent the attributes
associated with each edge.

3 PATTERNS FOR TRACKING AND CALIBRATION

To reach the outlined goals we propose a system of patterns for
tracking and calibration. A spatial relationship pattern is used to
identify parts of the overall spatial relationship graph for which a
known algorithm exists. The corresponding data flow component
executes the algorithm and provides the result again as an edge in
the spatial relationship graph, where this can be recursively used to

� � �

� � � � �� 	 �
 �� � � �
 � �� � � � � �� 	 �
 �

 � �� � � � � ��
 � �� � � 	 �� � � � � �� � � �

� � � �� �
 � � �� � �
 � � �
� � � �

� � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �
 � � ! " � � � � � � � � �" � � � ! " � � � � � � � � �" �

� �
� � � � �� # �...

Figure 1: Example of a system combining inside-out and outside-in tracking

identify again solvable subproblems until a solution for all required
transformations is found.

Such patterns define the ‘signature’ of an algorithms to solve a
specific problem in a tracking setup. These algorithms have as in-
put a set of measurements as defined by the problem and return a set
of measurements that is part of the solution to the overall problem.
But other than function signatures in programming languages, spa-
tial relationship patterns do not merely define the type of arguments
and return values, but also impose restrictions on the geometric re-
lationship between them.

The graphical representation of spatial relationship patterns de-
rives naturally from the one of a spatial relationship graph, because
patterns are in fact sub-graphs of the SR graph, as we will explain
later. However, there are two types of edges in a pattern: The first
are the edges that are required in the spatial relationship graph be-
fore a pattern can be applied. They are drawn as ordinary lines.
The other type are edges added by a pattern, drawn as dashed lines.
These two types of edges define the inputs and outputs of an algo-
rithm. We will give a more formal definition of spatial relationship
patterns in section 3.2

3.1 Basic Patterns

Before introducing the formal notation in the next section, we start
our overview with some basic patterns that are used in almost any
tracking system. Although they are usually implemented implicitly,
it is necessary to have them as separate components when trying
to create a descriptive language for general tracking setups. Basic
patterns construct the transitive reflexive closure of a spatial rela-
tionship graph. Using only the basic patterns, many runtime setups
(after calibration) can be described already.

3.1.1 Inversion

Most edges in the spatial relationship graph are directed edges,
since 6DOF pose transformations have a direction as well. The
Inversion pattern simply inverts this direction and gives the inverse
transformation.

While this seems trivial for just the transformations, it gets more
interesting when accuracy estimates are involved which need to get
transformed as well. Note that the inversion pattern can also be
applied to edges with 3D rotation or translation measurements.

3.1.2 Concatenation

The most common way of computing the transformation on an un-
known edge is by concatenation of subsequent edges.

Again this can also be applied to other edge types, such as two 3D
rotations or a matrix-vector multiplication of a 6D pose with a 3D
vector.

3.1.3 Multi-tracker fusion

The spatial relationship graph is actually a multigraph: sometimes
there exists more than one edge between two nodes; this is the case
when there are redundant cycles in the setup that after applying sev-
eral inversion or concatenation steps get transformed into a number
of parallel edges providing estimates for the same transformation
between two objects.

For perfect measurements these two estimates should be the
same, but not in the presence of errors. Statistical fusion algo-
rithms, such as the Kalman filter [1], can be applied to compute
the combined estimate.

In our graphical representation we write 2 . . .∗ to mark a multiple
edge with at least two instances. An in-depth explanation of the
consequences of this concept will follow in the next section.

3.2 Formalism

Before we can continue with more complex examples, we need to
introduce a formal definition of spatial relationship patterns: In the
following we sometimes do not explicitly distinguish between a
pattern and its graph representation. Nevertheless it should always
be clear that each graph is motivated by some algorithm that could
be instantiated in a data flow network.

Formal Definition We define a spatial relationship pattern P
to consist of four parts:

• a graph GP = (VP,EP) describing the basic spatial relationship
represented by the pattern,

• edge attributes type,static which both describe additional re-
strictions imposed on the inputs of the algorithms, as well as
describe properties of the output,

• and a set CP of correspondences between certain parts of the
input. This will be described below in detail.

• a set AP of algorithms implementing the specific pattern.

Graph Part of the pattern P is the graph GP = (VP,EP) on the
set of nodes VP which are virtual objects or roles (such as camera,
object or fiducal) which eventually have to be assigned to nodes
in the spatial relationship graph. Between these nodes we define
an edge set EP ⊆ VP ×VP of directed edges, which represent the
relevant spatial relationships on which the algorithms operate. We
further partition these edges as EP = IP∪̇OP into the set IP of input
edges and the set OP of output edges. The input edges represent
the data necessary as input to the algorithm in order to produce the
output edges. When applying a pattern to an spatial relationship
graph the input edges have to be present while the output edges are
inferred by the pattern.

In our graphical representation we draw input edges IP as normal
and output edges OP as dashed arrows.

Edge attributes The edges of a spatial relationship graph
are attributed by functions type : EP 7→ {6D,3D,3D→2D, . . .} and
static : EP 7→ {static,dynamic} in the same way as they are in the
spatial relationship graph. For input edges e∈ IP these represent ad-
ditional constraints that have to be fulfilled in order for the pattern
to be applicable. For output edges e ∈ OP these attributes spec-
ify further properties of the inferred edges the pattern allows to be
derived.

In our graphical representation edge attributes are represented as
edge labels, just as for edges in the spatial relationship graph.

Application of a pattern on SRG Given a spatial relation-
ship graph G = (V,E) and a specific pattern P, an instance of this
pattern is located in the SRG by an edge matching α : EP 7→ E∪E+

with E+ ⊆ V ×V which assigns every input edge in IP of the pat-
tern to a suitable edge contained in the SRG and every output edge
in OP of the pattern to an edge in a set E+ of derived edges which
may or may not be already present in G.

We denote such an instance by G[α(P)], its node set by
V [α(VP)]⊆V and its edge set by E[α(EP)]⊆ E ∪E+.

For an instance G[α(P)] we can finally decide whether to add the
output edges to the SRG or not. We call this procedure an applica-
tion of the pattern instance G[α(P)] on G results in a new SR graph
G′ = (V,E ′) with E ′ = E ∪E+.

If we repeat this for every locatable instance of P we call this an
application of P on G.

3.3 Correspondences

Many of the algorithms we are interested in take pairs of measure-
ments in two different coordinate systems and compute the trans-
formation between those. A good example is the 3D-3D pose esti-
mation – also known as the absolute orientation problem – which
takes corresponding 3D location measurements of a point in two
coordinate systems. If measurement-pairs of at least three points
are available, the rotation and translation between the coordinate
systems can be computed. In practice, such an algorithm can be
applied in two different situations:

Real-time Tracking When tracking a moving object, its position
and orientation with respect to some tracker coordinate sys-
tem must be computed for every point in time when a mea-
surement is made. Therefore, the locations of at least three
points on the object must be tracked simultaneously. One
could, for example, attach three ultrasound emitters in a
known, rigid configuration to the object, track each emitter
independently and use the 3D-3D pose estimation algorithm
to obtain the full 6D pose of the object.

Tracker Alignment In order to compute a rigid transformation be-
tween two tracking systems, it is sufficient to have only one
point that can be tracked by both systems simultaneously over
time. After obtaining at least three different (non-collinear)
measurement pairs, in this case sequentially, the same 3D-3D
pose estimation algorithm can be applied to compute the rela-
tionship between the two trackers.

In the example above, the algorithm could be used for tracker align-
ment with only one pair of measurements at a time, because the
estimated transformation was static. Having two different applica-
tions of the same algorithm is a general concept which appears with
many patterns and thus warrants special treatment.

Formal Definition Every time an algorithm of pattern P needs
to relate k different measurements in potentially different coor-
dinate systems, we identify the corresponding edges ei ∈ IP for
1 ≤ i ≤ k as a correspondence set CP. Furthermore we associate
with each correspondence set CP a set of integers MP of accept-
able numbers of corresponding measurements needed by the algo-
rithm. Most of the time this set will be characterized by some lower
bound, but it is also thinkable that some algorithm only operates for
example on multiples of four measurements. Finally we define the
correspondence of a pattern as CP = (CP,MP).

Note that these measurements in general have to be distinct from
each other and have to supply significantly different data. Further-
more there may be additional restrictions which are not directly
representable by a spatial relationship graph or pattern, such as non-
coplanarity of measured points.

While patterns with two corresponding edges (k = 2) are the
most common case, it is also possible to have one (e.g. the Multi-
Tracker Fusion pattern, see above) or more than two edges in one
correspondence. Also note that an easy generalization to more than
one correspondence per pattern is possible.

Notation In our graphical notation, we denote the correspon-
dence sets CP by dotted lines connecting all edges ei ∈ CP. We
further annotate these lines with restrictions on the number of ac-
ceptable measurements MP. A label ”‘3...*”’ for example signifies
that at least three measurements are required with no upper limit or

a) Pattern notation b) Expansion in space c) Expansion in time

Figure 2: Expanding the 3D-3D pose estimation pattern in time and in space

MP = {3,4, . . .} in this case. An example for this notation is given
in figure 2 a).

In order for a subgraph of a spatial relationship graph to fulfill
these requirements and thus to contain a pattern, it is necessary to
find an expansion of the correspondence of the pattern, leading to an
expanded version P̄ of pattern P. For this there are two fundamental
possibilities to expand: expansion in space and expansion in time.

Expansion in Space For a space expansion of a correspon-
dence set CP with restrictions MP in a spatial relationship pattern P
all edges ei ∈CP contained in the correspondence set are replaced
in P̄ by distinct instances ei,1, . . . ,ei,l of these edges for some ac-
ceptable multiplicity l ∈MP. This is accomplished by possibly du-
plicating nodes contained in a designated node set FP ⊂ VP. The
different edges thus represent similar, but may not represent identi-
cal spatial relationships.

For example for the spatial expansion of the 3D-3D pose esti-
mation example from above, it would be necessary to have at least
three copies of the node representing the point which is measured
in both coordinate systems. The space expansion of this pattern is
depicted in figure 2 b).

Spatial expansions of a pattern calculate the output edges of the
pattern for each time step in which the input edges are measured.
Thus spatial expansion may have both static and dynamic output
edges.

Expansion in Time The other possibility is to expand a corre-
spondence (CP,MP) is in time. This way the edges ei ∈CP remain
single edges in the expansion P̄ but have to be measured at different
times during the running time of the application. Furthermore all
edges f j ∈ EP \CP not contained in the correspondence in general
have to be static, while the edges ei ∈ CP must not be static and
have to display m distinct values for an m ∈MP during the running
time of the system.

This is the case for example when calibrating a static relation-
ship by sequentially placing a calibration tool at different points in
space and making measurements each time. See figure 2 c) for an
example of the time expanded 3D-3D pose estimation pattern. It
should be noted that thus expansions in time are only applicable if
static output edges are desired as CP ⊆ IP and thus all output edges
have to be static.

Application Note that a pattern P using correspondences is
never directly applied to an SR graph, but rather in one of the two
expanded forms. We denote the expanded form of a pattern P as P̄.

In cases where both time and space expansion are possible, i.e.
enough space-expanded edges are available and the other relation-
ships are static, the time-expansion should be preferred, as the in-
tegration of many measurements over time usually results in higher
accuracy.

3.4 Advanced Patterns

This section gives a short catalog of frequently used spatial rela-
tionship patterns in current augmented reality systems. For every
pattern, we give a short overview of how the space and time ex-
panded patterns can be applied as well as references to algorithms
that solve the problem.

This collection is by no means complete, but intended to further
illustrate the concept of spatial relationship patterns. Building a
larger collection is part of our future work.

3.4.1 3D-3D Pose Estimation

This pattern, also known as the absolute orientation problem, was
already discussed in section 3.3 and it is listed here only for com-
pleteness.

Expansion in space Used for 6D-tracking in systems that can
track rigid arrangements of multiple 3D points, such as some ultra-
sound systems.

Expansion in time Tracker alignment by moving a single
point through the overlapping tracking volumes of two trackers.

Algorithm references The classical algorithm is described
by Horn [4]. Other solutions have been found by Walker [9],
Umeyama [8] and Arun [3]. For unknown correspondences, a solu-
tion is proposed by Gold [15].

3.4.2 2D-3D pose estimation

The goal of 2D-3D pose estimation is to determine the location
and orientation of an object O with respect to a camera coordinate
system C, given the projection matrix that maps 3D locations to 2D
positions on the image plane I. Given the image coordinates of at
least four features F, whose 3D position on the object is known, the
transformation C→O can be computed.

For the sake of simplicity we do not distinguish between extrin-
sic and intrinsic camera parameters, however one could easily adapt
the patterns to reflect this distinction if relevant for the particular
implementation. For now, 3D→2D edges mean general projective
transformations which can contain both intrinsic and extrinsic pa-
rameters.

Expansion in space Most single-camera optical tracking sys-
tems determine the camera-to-object transformation by localizing
multiple 2D feature points with known 3D positions in a single im-
age. This includes marker-based approaches [23] such as the AR
Toolkit, which detects the corners of a square.

Expansion in time In its time expanded version, a 2D-3D
pose estimation algorithm can be used to compute the extrinsic pa-
rameters of a calibrated camera with respect to some other tracking
system. If a single point, tracked by both the camera and the 3D-
tracker, is moved around, the position and orientation of the camera
can be computed.

Algorithm references Due to the importance of this problem,
a large number of algorithms exist that vary in accuracy, speed,
robustness or the underlying mathematical structure. Some widely
used approaches are described by DeMenthon [10], Lu [19] and
Horaud [7]. If the correspondences between the 2D and 3D points
are not known, the SoftPOSIT [20] algorithm can be used.

3.4.3 2D-3D Triangulation

This pattern describes the classical n-ocular stereo vision problem.
When a single point F is seen by two or more cameras, its position
in a common camera coordinate system C can be computed, given
the projective transformations from C to the image planes I of the
individual cameras.

Expansion in space Classical n-ocular stereo, where a num-
ber of points are tracked by multiple cameras.

Expansion in time Instead of using multiple cameras, a
tracked camera can move around and determine the world-
coordinates of feature points seen in multiple images. In the com-
puter vision community, this is known as the structure from motion
approach. Note that in this pattern, the tracked camera position and
orientation has to be part of the projection matrix.

Algorithm references The basic techniques of point recon-
struction are well explained by Hartley and Zisserman [17] who
also give further references.

3.4.4 2D-3D Projective Calibration

For augmented reality applications, the projective properties of
cameras and display device have to be determined. In the sim-
plest case this results in a 3×4 homogeneous matrix, which defines
the transformation of 3D points from the camera coordinate system
C onto the image plane I. Having eleven degrees of freedom, it is
possible to compute the projection matrix from six corresponding
measurements of a feature F whose position is known both in the
camera image and in the external coordinate system.

Expansion in space In theory, a camera can be calibrated
from a single image of a special calibration pattern. In practice
this is rarely done, as this requires a lot of features which cannot lie
in a single plane.

Expansion in time Most algorithms for camera calibration
require multiple images of a planar calibration pattern, which con-
tains special features that can be detected by the camera. Often
internal and external camera parameters are computed separately
and non-linear distortion parameters are added, but without loss of
generality, these can be modeled by a single edge in the spatial re-
lationship graph.

Another interesting example is the SPAAM algorithm for cali-
bration of optical see-through HMDs where the user repeatedly has
to align a point on the screen with a known point in the world.

Algorithm references The projection matrix can be esti-
mated from a set of corresponding 2D-3D points using the direct
linear transform (DLT) algorithm [17, 12], for camera calibration,
Tsai [5] has proposed another method. Optical see-through head-
mounted displays are a special case since the gathering of point
correspondences requires user interaction [22] and therefore needs
to fulfill some boundary conditions on usability.

3.4.5 Hand-eye calibration

The classical application of Hand-eye calibration comes from the
field of robotics[6]. A robot R can, using internal sensors, deter-
mine the position of its hand H, on which a camera C is rigidly
mounted. An object O, which is not moving, is lying on the ta-
ble in front of the robot and can be tracked by the camera. If the
robot moves to three different positions, resulting in two indepen-
dent motion-pairs, the hand-eye calibration can compute both the
pose of the camera on the robot’s hand and the pose of the object
relative to the robot’s base coordinate system.

Expansion in space Unusual, as this would require multiple
identical robots.

Expansion in time Besides its classical application in
robotics, the hand-eye calibration is used for tracker alignment
when the systems are based on different technologies, so there is
no single target that can be tracked by both tracking systems. In-
stead, two rigidly connected targets are moved through the common
tracking area. From corresponding motion pairs, the hand-eye cal-
ibration algorithm can compute both the transformations between
the trackers and the two targets [24].

Algorithm references The classic approach and first formu-
lation of the problem was given by Tsai and Lenz [6] who solve it
by first decomposing the matrix in its translational and rotational
parts and then solving first for the rotation and then for the transla-
tion. Other solutions following this general scheme were publisher
later, but it was Daniilidis [16] who first did the estimation of the
translation and rotation at the same time by using dual quaternions.
In reality, most implementations only compute the H→C transfor-
mation, but then the R→O edge can be inferred trivially.

4 AN EXAMPLE SETUP

In order to demonstrate the usefulness of the pattern approach, we
now show how the combined inside-out outside-in tracking setup
explained earlier (figure 1) works in terms of pattern applications.
Careful analysis of the SRG (right half of fig. 1) will reveal three
different methods of calibration.

4.1 Tracking

During normal operation of the system, one would compute a trans-
formation between the camera C and the augmentation coordinate
frame A in order to perform video-see-through augmented reality.
The inside-out-outside-in sensor fusion setup gives increased accu-
racy and higher robustness in case one tracking system fails. In
terms of patterns, this means the following computations are per-
formed:

Applying the 2D-3D pose estimation pattern to the HMD cam-
era gives the transformation C→WT. For the outside-in tracking,
the direction of the HT→ART edge needs to be changed using
the Inversion pattern. Then, the Concatenation pattern is applied
twice, resulting in a second C→WT edge. Combining the two
edges (Multi-Tracker Fusion pattern) yields a third edge from C
to WT, but with the desired properties of higher accuracy and ro-
bustness. To compute the transformation to the augmentation A, the
Concatenation pattern is used again, finally giving the C→A edge.

4.2 Calibration

Before the system can be used, the inside-out and outside-in parts
of the setup need to be calibrated to each other. The goal of this cal-
ibration is to compute the edge C→HT, which describes where on
the HMD the ART target is positioned. Applying a systematic pat-
tern analysis reveals three fundamentally different ways to perform
that task.

Solution 1: Direct Computation Similarly to the tracking
case, the 2D-3D pose estimation is applied to yield the transforma-
tion C→WT. Using the Inversion pattern on ART→WT results in
WT→ART. Finally, the Concatenation is applied twice, resulting
in C→ART and C→HT, which is the relationship that is to be cal-
ibrated. The single steps of this solution are illustrated in figure
3.

If higher accuracy is needed, the time-expanded version of the
Multi-Tracker Fusion pattern can be used to statistically combine
many estimates of the C→HT edge over time.

1 5 1 5
1 5

a) b) c)

Figure 3: Calibrating the example setup from figure 1: direct com-
putation a) 2D-3D Pose Estimation b) 6D Inversion c) 6D
Concatenation

Solution 2: Hand-Eye Calibration This solution (fig. 4)
also starts with the 2D-3D pose estimation applied to the HMD
camera, giving C→WT. In the next step, however, the actual mea-
surements of the ART→WT edge are ignored, and just the fact that
the relationship is static is exploited. Therefore, the time-expanded
Hand-Eye Calibration pattern can be applied to the C→WT and
ART→HT edges, which yields the desired transformation C→HT
and also WT→ART, which is ignored.

Note that the calibration cannot be achieved in one step. The
HMD needs to be moved around, since the Hand-Eye Calibration
is expanded in time.

1 5 1 5 1 5

a) b) c)

Figure 4: Calibrating the example setup from figure 1: hand-eye
calibration a) 2D-3D Pose Estimation b) Hand-Eye Calibration c)
6D Inversion

Solution 3: 2D-3D Pose Estimation The third solution
(fig. 5) is similar to the first one, but the patterns are applied
in opposite order. First, Inversion and Concatenation are used
to combine the ART→HT and the ART→WT edge resulting in
an HT→WT edge. Then another Concatenation step is applied
which joins the HT→WT edge with each of the feature locations
WT→Fi, resulting in five new 3D edges HT→Fi that give the posi-
tion of the marker points in the coordinate frame of the head target.
In this case, the Concatenation effectively is a matrix-vector multi-
plication. Finally, a 2D-3D Pose Estimation yields the desired edge
C→HT. As in solution 1, the time-expanded Multi-Tracker Fusion
could be used for higher accuracy.

Discussion Having shown three different solutions to the cal-
ibration problem, the question is raised, which solution is the best.
At this point, we do not have an answer, but analyzing the different
algorithms with respect to numerical stability and robustness is part
of the ongoing research in our group. In the long term, general rules
which are not bound to a specific setup will need to be found.

4.3 Auxiliary Patterns

In real tracking setups, simple transformations are frequently ap-
plied to measurements, such as splitting up a 6D pose into its trans-

1 5 1 5
1 5

a) b) c)

Figure 5: Calibrating the example setup from figure 1: 2D-3D pose
estimation a) 6D Inversion and Concatenation b) 6D-3D Concate-
nation c) 2D-3D Pose Estimation

lation and rotation parts or decomposing a camera matrix into in-
trinsic and extrinsic parameters. Such transformations can also be
described by simple patterns consisting of one input and one output
edge.

These auxiliary patterns, however, are less useful to human sys-
tem engineers than they are to automated systems inferring optimal
data flows for tracking and calibration from a spatial relationship
graph description of a setup. A description of such a system is
given in the next section.

5 AUTOMATIC PATTERN DETECTION IN SPATIAL RELA-
TIONSHIP GRAPHS

To actually put the spatial relationship graph and spatial relation-
ship patterns to use in a changing or even dynamic tracker setup it
is necessary to have some means to automatically process them in a
way to apply suitable patterns. This enables us to implement many
interesting applications.

Our approach to automatically manipulate spatial relationship
graphs with patterns is split into two separate problems:

Single pattern detection Given a spatial relationship graph
G and a pattern P, systematically apply the pattern to the graph as
described above. This step first locates all instances G[αi(P̄)] of
a suitable expansion P̄ of the selected pattern P as subgraphs of
the SRG. This is related to the well known subgraph isomorphism
problem. Formally, given graphs G = (V1,E1) and H = (V2,E2),
the problem is: Does G contain a subgraph that is isomorphic to
H. Unfortunately this problem is well known to be NP-complete[2]
and thus is unlikely to have an efficient solution in the general case.
On the other hand, in this special case there are some factors which
work in our favor, which we will discuss later.

Control mechanism In order to reach a specific goal, for ex-
ample find a calibration setup for a user selected edge, a control
mechanism is necessary that determines a suitable sequence of pat-
terns (P1,P2, . . . ,Pn) to apply to the SRG in question in order to
reach the desired goal. For this, the controller could exhibit some
kind of reasoning about rules associated with the patterns or in the
simplest case, it may be replaced by an explorative search over the
tree formed by all possible pattern combinations.

5.1 Pattern Detection Algorithm

We now present an algorithm which implements the first step of this
strategy. Given a graph G and a pattern P we determine the appli-
cation of P on G. Note that instead of first choosing an expansion P̄
and locating this expansion in G, we locate all unexpanded copies
of P in G and unify these to expanded pattern instances. We will
explain some further details below.

1. Find all occurrences G[α ′
i (P)] of the unexpanded pattern P in

the graph G

2. Find inclusion maximal sets of patterns that represent expan-
sions of the pattern and respect all relevant constraints

3. If the pattern satisfies the correspondence requirements, we
have located an instance G[αi(P̄)] of an expansion P̄ of P.

4. If the inferred edge contributes towards the overall strategy as
determined by the controller, it is inserted into the graph

Unifying pattern instances After the first step, the algorithm
has supplied us with a list (G[α ′

1(P)], . . . ,G[α ′
k(P)) of all instances

of the unexpanded pattern P. We need, in order to successfully de-
tect suitable expansions of the pattern, collect compatible instances
and unify them such that a resulting instance G[αi(P̄)] contains as
many edges as possible which contribute to the correspondence
(CP,MP) of P. At the same time, all distinct occurrences of the
pattern have to be preserved as individual instances.

An important further constraint is that for any expansion of a
pattern, a set of edges contributes to the correspondence only if
the information expressed by these edges is not already contained
in the collection of the pattern so far. We for now, denote such a
located collection by G[αi(P̄)] and check if it actually represents an
instance of an expansion of P.

If every edge e j ∈ CP in the correspondence set of P is repre-
sented by m edges in the collected instance and m ∈ MP is an ac-
ceptable number of measurements, then we have found an instance
G[αi(P̄)] of a space expansion of P.

If on the other hand every edge e j ∈ CP in the correspondence
set of P is represented by a single edge in the collected instance
and all edges in EP \CP are static as well as all edges in CP are
dynamic, we have found an instance G[αi(P̄)] of a time expansion
of P. In any other case, we reject the collected instance as an incor-
rect expansion of P. This step finally constructs a list of all found
expanded instances of P in G.

When to add new edges After an instance of an expanded
spatial relationship pattern P̄ has successfully been located in the
SRG G, we may proceed to insert the output edges OP of the pattern
after determining their new properties.

Here another problem arises, as the unconditional insertion of
all derivable edges leads immediately to uninteresting results and
perpetual insertion of similar edges. An obvious example for this
is that an application of the inversion pattern produces a new edge
which can of course be inverted again. But this obviously adds
no new information to the spatial relationship graph. Furthermore,
with each inversion the accuracy of the edge is reduced which is
also undesirable.

To overcome this problem we additionally attribute each edge
with a combination of information about the spatial relations (pairs
of nodes in the SRG) from which the edge is derived as well as the
combination of operations which are used. This is similar to the
bookkeeping required to later extract information for the data flow
generation for a particular edge.

An exception to this rule are inferred, static edges which may
be averaged over time and thus indeed behave better than the set
of edges from which they are derived (assuming not all edges con-
tributing are static themselves).

Multiple Solutions If a sequence of pattern applications to an
SRG derives multiple solutions for a queried edge, it is necessary
to decide which solution is best for the given application. There-
fore, each solution has to be evaluated against various criteria, such
as accuracy, lag, update frequency or numerical stability of the al-
gorithms used. In the design phase of a system, also the required
resources, including the cost of the equipment used, may play a
role.

It will be part of the future work in our group to investigate these
factors and we will try to find general rules for evaluating different
data flows to allow systems to automate this decision.

Data flow construction From the sequence of located pat-
tern instances (G[α1(P1)], . . . ,G[αk(Pk)]) as determined by the con-
troller and the pattern detection algorithm which have to be applied
to the SR graph G in order to compute a given transformation, a data
flow graph can be created, which describes the connected compo-
nents that performs the actual computations.

A data flow graph is a directed, acyclic graph with the track-
ing components as inputs and a single output that provides the de-
sired spatial relationship and is instantiated as a data flow network
at runtime. However, to save computational resources in larger se-
tups, parts of data flow networks can be shared among different
applications. An example of a data flow graph that performs the
computations, explained in section 4.1, is shown in figure 6.

Constructing the data flow graph from the sequence of located
pattern instances (G[α1(P1)], . . . ,G[αk(Pk)]) is done in a rather
straightforward fashion: All edges in the initial SR graph are as-
sociated with a tracking component or some other service (e.g.
a database) that initially provides the unprocessed measurements.
These components serve as the basic inputs to the data flow net-
work. When an expanded instance of pattern Pi is applied in the SR
graph, this creates a new component in the data flow graph. This
component executes an algorithm from the set of associated algo-
rithms of the pattern Pi and provides new outputs in the data flow
graph, which are associated with the new edges E[α(OP̄i

)] in the
SR graph. The inputs of the component are connected to the com-
ponents associated with the matched input edges E[α(IP̄i

)]. This is
repeated for all pattern applications of the sequence till the desired
measurement is available at the end of the data flow graph.

Performance We implemented a proof of concept design of
all these concepts above using the high level language python. As
expected the performance of this system is not yet good enough to
be ready for every day use in real applications. The most computa-
tionally intensive parts are as expected finding all occurrences of a
pattern in the SRG, as well as unifying these instances.

More clever bookkeeping and more intelligent data structures
would be promising to significantly improve the performance in
some of these aspects, but there are also fundamental problems
stemming from the principal hardness of the problems involved as
described above. Fortunately there are a few factors that work in
our favor. First the size of a spatial relationship graph should in
practice be relatively small so that subgraphs still can be found in
reasonable time. Furthermore even if the graphs get larger, it should
be possible to restrict the problem to a subgraph of the original spa-
tial relationship graph. A second advantage is that the edges are
attributed by type and by static/dynamic relationships. This essen-
tially partitions the edge sets of the graph and leads to simple yet
very helpful heuristics for subgraph search.

Also it is plausible that further heuristics may help reduce the
size of the problem and thus speed up all parts of the computa-
tion. Further investigations of these possibilities are necessary and
should be one of the next topics to research.

5.2 Applications

While our current implementation described above serves as a good
proof-of-concept, we have yet to integrate the algorithm into real
applications. The two scenarios that we are working on are a run-
time engine for data flow creation in dynamic sensor networks and
an interactive tracking environment design tool.

5.2.1 Data Flow Generation at Run-Time

In order to apply the pattern detection algorithm in a system for au-
tomatic data flow network generation in dynamic systems, a track-
ing middleware is necessary, which handles the registration of new
trackers and applications that require tracking information. In this
section we describe an approach based on our DWARF middleware.
The system is an improvement of our earlier implementation of the
Ubitrack concepts, which was adapted to suit the spatial relation-
ship pattern concepts. We refer to [26] for an introduction to the
concepts of DWARF and the Ubitrack Middleware Agent (UMA),
which is responsible for monitoring application queries and the cre-
ation of data flow networks.

In DWARF, we implement spatial relationship patterns using a
so-called template service descriptions, which have needs and abil-
ities corresponding to the inputs and outputs of the algorithm, but
where attributes and predicates are not bound to specific values.
When a pattern is used in a data flow network, the correspond-
ing template service description is copied by the UMA and the
attributes and predicates are set to concrete values. Starting and
connecting the actual processes is then done by the DWARF service
manager.

5.2.2 Tracking Setup Design Tool

In small static setups, such as the one described in section 4, a
tracking middleware is unnecessary and would introduce additional
overhead. Still, computerized support is desirable when alternatives
for computing a transformation can easily be overlooked.

We are working on implementing a semi-automatic design tool
for tracking setups, which allows the user to interactively construct
a spatial relationship graph with all relevant properties. Then, an
edge in the graph can be selected and the program presents all pos-
sible data flows that can be used to track or calibrate the selected
relation. If no suitable data flow is found, the tool can make addi-
tional suggestions such as asking whether it is possible to make a
particular edge static during the time of calibration.

6 CONCLUSION AND FUTURE WORK

We have introduced the concept of spatial relationship patterns as
a systematic method for finding suitable algorithms that solve the
problems of tracking and calibration in complex sensor setups. As
the pattern collection given in this paper focuses mostly on camera-
based tracking-techniques, we want to expand this catalog to in-
clude algorithms used with other sensors such as gyroscopes, ac-
celerometers or distance-based methods. We expect that this may
require additional properties to be modeled in the SR graph, but
the general formalism should be sufficiently strong to handle these
cases. This collection will be available as a web page and provide
more links to algorithms than possible within the scope of this pa-
per.

Based on the spatial relationship pattern formalism, we have de-
scribed an algorithm for automatic construction of data flow graphs
in dynamic tracking environments. A system built upon it possibly
has access to a larger repository of algorithms to choose from than
previous approaches. Besides many small performance improve-
ments, our future work will concentrate on creating a distributed
version of the pattern detection to improve scalability in large envi-
ronments. A promising idea is to use the Bellman-Ford algorithm,
implemented in our previous work, to reduce the spatial relation-
ship graph to a smaller subgraph to which the pattern detection is
applied.

ART
Tracker

InversionART HT

Database

Concatenation

ART WT

HT ART

ConcatenationC HT

HT WT

Camera
Segmentation

2D-3D Pose
Estimation

IP F1-5

WT F1-5

C IP

Multi-Tracker
Fusion

C WT

C WT RenderingC WT

Figure 6: Data flow graph for implementing the example scenario from section 4.1.

ACKNOWLEDGMENTS

Part of this work was supported by the Deutsche Forschungs-
gemeinschaft (KL1460/2), the Bayerische Forschungsstiftung
(project TrackFrame, AZ-653-05) and the European Commission
(project PRESENCCIA, contract no. 27731).

REFERENCES

[1] GELB, A., Applied Optimal Estimation (MIT Press, Cambridge, Mas-
sachusetts; London, 1974), 15th ed.

[2] GAREY, M. R., JOHNSON, D. S., Computers and Intractability; A
Guide to the Theory of NP-Completeness (W. H. Freeman & Co.,
1979)

[3] ARUN, K., HUANG, T., BLOSTEIN, S., Least-Squares Fitting of Two
3-D Point Sets, in IEEE Transactions on Pattern Analysis and Machine
Intelligence, 9(5) (1987) 698–700

[4] HORN, B., Closed Form Solutions of Absolute Orientation Using Unit
Quaternions, in Journal of the Optical Society of America A, 4(4)
(1987) 629–642

[5] TSAI, R., A versatile camera calibration technique for high-accuracy
3D machine vision metrology using off-the-shelf TV cameras and
lenses, in IEEE Journal of Robotics and Automation

[6] TSAI, R., LENZ, R., Real time versatile robotics hand/eye calibra-
tion using 3D machinevision, in IEEE International Conference on
Robotics and Automation, vol. 1 (1988) 554–561

[7] HORAUD, R., CONIO, B., LEBOULLEUX, O., LACOLLE, B., An an-
alytic solution for the perspective 4-point problem, in Comput. Vision
Graph. Image Process., 47(1) (1989) 33–44

[8] UMEYAMA, S., Least-squares estimation of transformation param-
eters between two point patterns, in Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 13(4) (1991) 376–380

[9] WALKER, M. W., SHAO, L., VOLZ, R. A., Estimating 3-D location
parameters using dual number quaternions, in CVGIP: Image Un-
derst., 54(3) (1991) 358–367

[10] DEMENTHON, D., DAVIS, L. S., Model-Based Object Pose in 25
Lines of Code, in European Conference on Computer Vision (1992)
335–343

[11] STRAUSS, P. S., CAREY, R., An Object-Oriented 3D Graphics
Toolkit, in Proceedings of SIGGRAPH 1992, vol. 26, edited by CAT-
MULL, E. E. (1992) 341–349

[12] ZHANG, Z., FAUGERAS, O., 3D Dynamic Scene Analysis (Springer
Verlag, Berlin Heidelberg New York, 1992)

[13] TUCERYAN, M., GREER, D. S., WHITAKER, R. T., BREEN, D. E.,
ROSE, E., AHLERS, K. H., CRAMPTON, C., Calibration Require-
ments and Procedures for a Monitor-Based Augmented Reality Sys-
tem, in IEEE Trans. Vis. and Comp. Graph., 1(3) (1995) 255–273

[14] SZALAVÁRI, Z., SCHMALSTIEG, D., FUHRMANN, A., GERVAUTZ,
M., Studierstube - An Environment for Collaboration in Augmented
Reality, in Journal of the Virtual Reality Society

[15] GOLD, S., RANGARAJAN, A., LU, C.-P., PAPPU, S., MJOLSNESS,
E., New algorithms for 2D and 3D point matching: pose estimation
and correspondence., in Pattern Recognition, 31(8) (1998) 1019–1031

[16] DANIILIDIS, K., Hand-eye calibration using dual quaternions, in
Journal of Robotics Research, 18 (1999) 286–298

[17] HARTLEY, R. I., ZISSERMAN, A., Multiple View Geometry in Com-
puter Vision (Cambridge University Press, 2000)

[18] HOFF, W., VINCENT, T., Analysis of Head Pose Accuracy in Aug-
mented Reality, in IEEE Transactions on Visualization and Computer
Graphics, vol. 6(4), 319–334 (IEEE Computer Society, 2000)

[19] LU, C.-P., HAGER, G. D., MJOLSNESS, E., Fast and Globally Con-
vergent Pose Estimation from Video Images, in IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(6) (2000) 610–622

[20] DEMENTHON, D., DAVID, P., SAMET, H., SoftPOSIT: An Algorithm
for Registration of 3D Models to Noisy Perspective Images Combining
Softassign and POSIT, Tech. rep., University of Maryland, MD 2001

[21] REITMAYR, G., SCHMALSTIEG, D., OpenTracker: An Open Soft-
ware Architecture for Reconfigurable Tracking based on XML, in Pro-
ceedings of IEEE Virtual Reality (Yokohama, Japan, 2001) 285–286

[22] TUCERYAN, M., GENC, Y., NAVAB, N., Single-Point Active Align-
ment Method (SPAAM) for Optical See-Through HMD Calibration for
Augmented Reality, in Presence: Teleoperators and Virtual Environ-
ments, 11(3) (2002) 259–276

[23] ZHANG, X., FRONZ, S., NAVAB, N., Visual Marker Detection and
Decoding in AR Systems: A Comparative Study, in First IEEE and
ACM International Symposium on Mixed and Augmented Reality (IS-
MAR 2002) (Darmstadt, Germany, 2002)

[24] BAILLOT, Y., JULIER, S., BROWN, D., LIVINGSTON, M. A., A
Tracker Alignment Framework for Augmented Reality, in Proceedings
of 2nd International Symposium on Mixed and Augmented Reality (IS-
MAR) (2003) 142–150

[25] COELHO, E. M., MACINTYRE, B., JULIER, S., OSGAR: A Scene-
graph with Uncertain Transformations, in Proc. IEEE International
Symposium on Mixed and Augmented Reality (ISMAR’04) (IEEE,
Washington, DC, 2004) 6–15

[26] NEWMAN, J., WAGNER, M., BAUER, M., MACWILLIAMS, A., PIN-
TARIC, T., BEYER, D., PUSTKA, D., STRASSER, F., SCHMALSTIEG,
D., KLINKER, G., Ubiquitous Tracking for Augmented Reality, in
International Symposium on Mixed and Augmented Reality (ISMAR)
(Arlington, VA, USA, 2004)

