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ABSTRACT

Ubiquitous Tracking (Ubitrack) setups, consisting of many previ-
ously unknown sensors, offer many possibilities to perform sensor
fusion in order to increase robustness and accuracy. In particular,
the dynamic combination of mobile and stationary trackers enables
the creation of new wide-area tracking concepts.

In this work, we present a setup in which a gyroscope is dy-
namically fused with three different mobile and stationary sensors,
based on the concepts of Spatial Relationship Graphs (SRGs) and
Patterns. For this, we contribute new patterns that, based on well-
known algorithms, enable the transformation of rotation velocity
and the fusion with different absolute trackers. The usefulness of
the approach is shown in a system that automatically reconfigures
the SRG based on course tracking data, and, depending on the struc-
ture of this SRG, automatically selects a suitable fusion algorithm.

Keywords: Augmented Reality, Tracking, Calibration, Sensor Fu-
sion, Gyroscopes, Inertial Sensors

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities; I.3.1 [Computer Graphics]: Hardware Architecture—
Input devices

1 INTRODUCTION

In optical see-through augmented reality, accurate tracking, espe-
cially of the user’s head orientation, is important to provide a good
3D registration of virtual objects with the world. Starting with the
work of Azuma [3], many publications in the past have shown that
inertial sensors, in particular gyroscopes, can be used to improve
the latency and accuracy of the orientation tracking. By fusing the
inertial data with measurements from other sensors, drift can be
eliminated, which is the dominant source of error in inertial sen-
sors.

In our previous work, we introduced the concept of spatial rela-
tionship graphs (SRGs) [13], which forms the basis of the ubiqui-
tous tracking (Ubitrack) approach. SRGs allow the formal speci-
fication of tracking setups by describing the relationships between
different coordinate frames and their properties. Using spatial re-
lationship patterns [16], new geometric relationships can be de-
rived from the SRG automatically, using well-known algorithms
for tracking, calibration and sensor fusion. Based on this formal
framework, a Ubitrack system can dynamically combine a variety
of available, but previously unknown sensors in order to deliver
to applications the tracking performance they require. This ide-
ally leads to large heterogeneous systems where users can seam-
lessly move between imprecise wide-area tracking systems and lo-
cal high-precision trackers. Accuracy and availability can be im-
proved by combining user-worn and world-fixed sensors.

The goal of this paper is to use the Ubitrack tools to analyze typi-
cal tracking situations that can be improved with gyroscope fusion.
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This paper further extends the catalog of spatial relationship pat-
terns given in [16] with new patterns that deal with these situations.
We will distinguish particularly between the fusion with inside-out
and outside-in trackers. We then derive the necessary formulas for
transformation of incremental orientation data and provide a solu-
tion for gyroscope-to-tracker calibration. To show the usefulness
of our approach, we first perform an evaluation of the sensor fu-
sion quality. Then, a real ubiquitous tracking system is described,
where, based on the derived spatial relationship patterns, the gyro-
scope worn by a mobile user is automatically fused with an inside-
out marker tracking and two stationary tracking systems, depending
on availability.

Related Work Hybrid tracking setups, consisting of inertial
sensors combined with other tracking methods, are a well-studied
field of research. Azuma [3] has introduced gyroscope sensing to
AR, and the topic has been further deepened by [6, 21, 18, 17, 10, 2]
and others.

We complement this work by adding a new on-line calibration
algorithm and a spatial relationship graph formulation of the in-
volved algorithms for measurement transformation, calibration and
fusion. This is necessary to automatically integrate gyroscopes into
ubiquitous tracking systems in a meaningful way.

In our previous work, the concepts of spatial relationship graphs
(SRGs) [13] and spatial relationship patterns [16] were introduced,
which allow to formally model relationships between the different
coordinate frames in a tracking setup and for describing the oper-
ations performed by a tracking/calibration algorithm. These con-
cepts will be described in more detail in the next section, and then
extended by the formalism necessary to integrate gyroscopes into
the framework.

Apart from our own work, there are relatively few efforts in
building large heterogeneous tracking setups using different off-
the-shelf sensors. One example is described in [7], however the
authors are focusing on providing a nice hand-off between com-
mercially available systems and their own sensors.

2 SPATIAL RELATIONSHIP GRAPHS AND PATTERNS

In [16], [13] and [15] the concept of Spatial Relationship Graphs
(SRGs) and Spatial Relationship Pattern as a method to formally
describe tracking environments and tracking algorithms respec-
tively was introduced. Since our discussion makes heavy use of
these notions we briefly outline the main concepts and their inter-
action here. Again, for more details see [16], [13] and [15].

2.1 Spatial Relationship Graphs
In our approach, a tracking setup is specified using a spatial rela-
tionship graph (SRG), which describes relevant coordinate frames
and tracking devices. The nodes of a spatial relationship graph rep-
resent coordinate frames, e.g. that of a camera located at its camera
center, that of a CAD-model augmented onto some object or that
of a tracker target. If the transformation between two coordinate
frames is known or measured at runtime, this is indicated by a di-
rected edge between those coordinate frames. Note that edges do
not represent the measurements themselves, but indicate availabil-
ity of measurements, i.e. they usually contain a reference to some
software component, e.g. a driver, that provides the actual measure-
ments at runtime. Edges in the SRG also have attributes specifying



relevant properties of the measurement, such as data type (3D Po-
sition, 3D Rotation, 6DoF Pose, etc.), quality or whether the rela-
tionship is known to be static. In the graphical representation, these
attributes are drawn as annotations to the edge in question. An ex-
ample of an SRG is shown in figure 10.

2.2 Construction of Data Flow Networks
The goal of our approach is to take the abstract spatial relationship
graph declaration and construct at runtime a data flow network con-
sisting of tracking and transformation components that provide an
application with estimates of those spatial relationships that the ap-
plication requires. Generally, the transformations needed by an ap-
plication are not directly measured, but instead can be inferred from
existing measurements. When a new transformation is inferred, this
adds a new edge to the graph which connects different nodes than
the existing edges or has different attributes.

To describe which measurements can be inferred from the given
SRG description, we use spatial relationship patterns [16]. Spatial
relationship patterns are subgraphs of SRGs, which have two dif-
ferent kinds of edges: input edges that have to be present before a
pattern can be applied, and output edges, which are added to the
SRG afterward. Input edges are denoted by solid lines and output
edges are dashed.

The goal is to find a chain of pattern applications on the given
SRG that allows us to infer the edge that corresponds to an applica-
tion’s request. Each pattern application corresponds to a component
in a data flow network that performs the actual computation by tak-
ing the measurements of the input components and producing the
inferred measurement of the output edge. Therefore, by finding the
right chain of pattern applications, a data flow network can be con-
structed automatically at run time from a given SRG description.

Most tracking problems involving only 6D measurements can be
solved using the three spatial relationship patterns depicted in figure
1:

(a) Concatenation

(b) Inversion (c) Fusion

Figure 1: Basic Spatial Relationship Patterns

The inversion pattern represents the most basic transformation
of tracking data: Consider that a transformation from coordinate
frame A to coordinate frame B is described by a 4× 4 matrix M.
Then the inverse transformation, going from B to A, can be com-
puted as M−1. Similar methods exist when the 6D transformation
is described e.g. by a translation and a quaternion.

The concatenation pattern exploits the transitivity of spatial re-
lationships: If the transformations from A to B and from B to C are
given as 4× 4 matrices M and N, the transformation from A to C
can be computed as the product MN.

When two or more edges are available between two nodes, the
measurements can be fused by statistical combination, using the ac-
curacy information that accompanies the measurements. This usu-
ally results in estimates of higher accuracy.

Note that the same patterns exist for 3D rotations. More com-
plex patterns based on the concept of corresponding measurements

are described in [16]. The goal of this paper is to extend this cata-
log of patterns with the algorithms necessary for the integration of
gyroscopes into such Ubiquitous Tracking setups.

3 INCREMENTAL ROTATION AND ROTATION VELOCITIES

We start the discussion of gyroscope integration by deriving some
basic rules for the treatment of incremental rotations. Given two
sequential rotations rt1 and rt2 at times t1 and t2, we can express rt2
as rt1 multiplied by an incremental rotation ∆r:

rt2 = rt1 ·∆r where ∆r = r−1
t1 · rt2

In the spatial relationship graph we treat incremental rotations as
separate edges. The following figure shows an SRG where both
absolute orientation and incremental rotation is measured.

Figure 2: SRG with absolute and incremental rotation measurements

3.1 Basic Incremental Rotation Patterns

In order to combine gyroscopes with other sensors, we need con-
catenation and inversion patterns for incremental rotation, similar
to the patterns described above, as the two sensors are unlikely to
use the same coordinate frames. In realistic gyroscope scenarios,
we can assume the following restrictions: First, only concatenation
of incremental with absolute orientation is necessary, not incremen-
tal with incremental. Second, the absolute orientation part can be
considered static, i.e. not changing over time.

Target Coordinate Change The first important transforma-
tion of relative orientation is the change of the target coordinate
frame. For any given pair of rotations r and q let r′ = r · q be the
product of r and q, which effectively moves the target coordinate
frame of the transformation r.

Now let t1 and t2 be two consecutive points in time and let r and
q be two absolute rotations measured at t1 and t2 resulting in rt1 ,rt2
respectively qt1 ,qt2 . We can compute the resulting incremental ro-
tation in the transformed coordinate frame as

∆r′ = r′t1
−1 · r′t2

= (rt1 ·qt1)
−1 · (rt2 ·qt2)

= q−1
t1 ·∆r ·qt2 .

Assuming that q is static, i.e. qt1 = qt2 = q, we can write

∆r′ = q−1 ·∆r ·q.

The resulting spatial relationship pattern is displayed in figure 3:

A B CΔr: ΔRot q: Rot
static

Δr’: ΔRot

Figure 3: Incremental rotation target coordinate change pattern



Source Coordinate Change Similarly, if we let r′ = q · r we
can change the source coordinate frame of the rotation r. In this
case we calculate the resulting incremental rotation in the trans-
formed coordinate frame ∆r′ as

∆r′ = r′t1
−1r′t2

= (qt1 · rt1)
−1 · (qt2 · rt2)

= r−1
t1 ·q

−1
t1 ·qt2 · rt2 .

Assuming again that q is static, this simplifies to

∆r′ = ∆r

This means that incremental rotations are valid for all source co-
ordinate frames connected by static transformations. The resulting
spatial relationship pattern is displayed in the figure 4:

A B Cq: Rot
static Δr: ΔRot

Δr’: ΔRot

Figure 4: Incremental rotation source coordinate change pattern

Inversion The third transformation of incremental rotation we
need is the inversion, i.e. the exchange of source and target coordi-
nate frames. We need to compute ∆r′ of r′ = r−1:

∆r′ = r′−1
t1 · r

′
t2

= rt1 · r−1
t2

= rt1 · (rt1 ·∆r)−1

= rt1 ·∆r−1 · r−1
t1

This shows that it is not possible to invert an incremental rotation
without knowing the absolute orientation. Thus, the spatial rela-
tionship pattern becomes:

Figure 5: Incremental rotation inversion pattern

3.2 Rotation Velocities
So far, it did not matter, how exactly rotations were represented, as
long as meaningful product and inversion operators where defined.
For the rest of this paper, we will use quaternions, which represent
rotations as 4-element vectors q = (q1,q2,q3,q0) of norm |q| = 1.
Quaternions have the advantage of a relatively low-dimensional
representation (compared to matrices) and easy to compute prod-
uct and inversion operations (compared to e.g. Euler angles). For
more details on quaternions, we recommend [12].

Also, we have only dealt with incremental rotations, which
have the disadvantage of depending on the time interval between
the measurements. In order to be able to compute sampling-
independent rotation velocities, a representation is required where
multiplication and division by time are easy to compute. We there-
fore express rotation velocities as 3-element vectors v where v rep-
resents the axis of rotation and |v| the angle of rotation. By repre-
senting quaternions as 3-element vectors and a scalar q = (q,q0),

we can convert between incremental rotation quaternions and rota-
tion velocities:

vel(q,∆t) = q
2cos−1(q0)
|q|∆t

quat(v,∆t) =
(

v
|v|

sin
∆t|v|

2
,cos

∆t|v|
2

)
In the rest of this paper we will use quaternions to represent ro-

tations, and axis-angle vectors for rotation velocities. Note that the
transformation formulas from the previous section are still valid for
rotation velocities expressed as axis-angle vectors, if we silently ex-
tend them to a 4-element quaternion by setting v0 = 0. The reason
is that the product q ·∆r · q−1 (also called the quaternion rotation
operator) only changes the direction of ∆r but not its magnitude,
given that |q|= 1.

4 GYROSCOPE CALIBRATION

The spatial relationship graph of a typical gyroscope fusion situa-
tion is shown in figure 6. The gyroscope incrementally tracks its

Gyro
World

Tracker
World

a: Rot
static

Tracked
ObjectGyro

b: Rot
static

r: RotΔq: ΔRot

Figure 6: A typical tracking situation with a gyroscope

own orientation q with respect to some (usually unknown) world
coordinate frame. The other tracker tracks the orientation of an
object with respect to a different world coordinate frame. This
world coordinate frame is statically related to the gyroscope world
(for now, we can just ignore the direction of the transformation r).
The key point here is that the gyroscope is rigidly connected to the
tracked object, by some static, but unknown rotation b. As we have
defined incremental rotation as q2 = q1 · ∆q, the direction of the
∆q edge indicates that the rotation increment ∆q is measured in the
gyroscope coordinate frame.

In order to fuse the gyroscope with the absolute tracking, we
need to bring the measurements ∆q into the tracker’s coordinate
frames. As was shown above, the source coordinate frame can
be moved without actually knowing a, but the rotation b needs to
be known. Note that, for the same reason, small amounts of drift,
which can be modeled as a change in the gyroscope’s world coor-
dinate frame, only minimally change the rotation increments. This
small error can later be compensated by the fusion algorithm.

Figure 7: The rotation-only hand-eye calibration pattern



Hand-Eye Calibration The problem of determining the un-
known but static transformations a and b given corresponding sets
of incremental transformations ∆q and ∆r is well-known in the
robotics community and called the “hand-eye calibration”. It has
also previously been applied to tracker alignment [4].

For the gyroscope calibration we use the Tsai-Lenz [19] algo-
rithm, which directly uses quaternions and can easily be imple-
mented, especially when only rotation is needed. Given pairs of
corresponding incremental rotation quaternions ∆qi = (∆qi,q0,i)
and ∆ri = (∆ri,r0,i), the algorithm solves a set of equations

Skew(∆qi +∆ri)b′ = ∆ri−∆qi

where

Skew(v) =

 0 −vz vy
vz 0 −vx
−vy vx 0


As Skew is singular, at least two corresponding pairs are required to
solve for b′ in a least-squares fashion. The imaginary part b of the
resulting quaternion b is determined from b′ by computing

b =
b′√

1+ |b′|

The real part b0 of b is computed by requiring that |b|= 1.

Online Computation In order to avoid having to store long
lists of measurements, we can implement the algorithm iteratively,
using the Kalman filter equations:

bi = bi−1 +Ki(zi−Hibi−1)
Pi = (I−KiHi)Pi−1

where

Ki = Pi−1HT
i (HiPi−1HT

i +Ri)−1

Hi = Skew(∆qi +∆ri)
zi = ∆ri−∆qi

Ri = I

The initial rotation can be set to b0 = 0 if the initial covariance is
set to P0 = Ic, where c is a very high value. Note that this Kalman
filter formulation is an optimal estimator for b, as the underlying
equation system is linear [11].

Measurement Selection The original Tsai-Lenz paper rec-
ommends to take a number of absolute measurements q and r, and
use the incremental rotations ∆qi j = q−1

i q j from all possible pairs
qi and q j. While, this way, a maximum of information can be ex-
tracted from the given measurements, the approach is not suited
to the gyroscope case. Rotation increments integrated over a long
time suffer from the gyroscopic drift. On the other hand, incremen-
tal rotations computed from two consecutive measurements of the
absolute tracker can be dominated by the tracker noise if the two
rotations are not sufficiently apart. We therefore use both an upper
bound on the time and a lower bound on the rotation angle for se-
lecting incremental rotations used in the calibration. Additional ro-
bustness against outliers can be gained by requiring the incremental
rotations of both systems to have a similar magnitude.

5 GYROSCOPE FUSION

Having properly calibrated the gyroscope with respect to the abso-
lute tracker, we can think about fusing the two. We start this section
with explaining the geometrical considerations before we come to
the actual fusion algorithms.

Figure 8: The outside-in gyroscope fusion pattern

5.1 Geometrical Considerations
In AR/VR setups, a gyroscope can be used in two different ways
that have to be distinguished:

Outside-In Tracking In the first case, the gyroscope is attached
to an object that is tracked by an outside-in tracking system. Ne-
glecting the change in translation, the known pose can conceptually
be split into rotation and translation, and the incremental rotation is
multiplied to the absolute rotation:

ri = ri−1 ·∆ri

After that, rotation and translation are combined to a 6DOF pose
again. The resulting spatial relationship pattern is depicted in fig.
8. Note that we assume that the gyroscope’s incremental rotation
is already transformed into the tracker coordinate frame using the
source and target coordinate change patterns.

Inside-Out Tracking Inside-out tracking, where a camera is
mounted on the user’s head and normally looking in the same di-
rection as the user, is frequently used in Augmented Reality appli-
cations. The advantage of inside-out tracking compared to outside-
in is that the accuracy along the x and y axes is usually very good,
with the trade-off of low accuracy in the depth (which is hardly
noticeable).

We usually assume that some static object is observed by a mov-
ing camera (see Fig 9). The simplest way of fusing is to invert the
absolute tracker’s pose, apply the outside-in fusion and invert the
result again. In some cases, however, this method may fail. If the
camera observes a planar structure which is parallel to its image
plane, the rotational accuracy of the inside-out tracker tends to be
very bad (see e.g. [14]), which will add a lot of jitter to the trans-
lation of the inverted pose. If now the rotation is corrected by the
gyroscope without considering the translation, this jitter will be vis-
ible in the image.

Figure 9: The inside-out gyroscope fusion pattern

We therefore need to explicitly model that the incremental ro-
tation not only changes the absolute orientation, but also causes
a change in the position of the observed world with respect to
the camera. This rotation of the position vector is inverse to the
incremental rotation. Also, the rotation increment must be con-
verted to the other coordinate frame, before it can be applied to
the world’s orientation. Thus, a transformed rotation increment ∆r,
measured by the gyroscope, causes the following update of the pose
P = (tp,rP), measured by the camera:

tP,i = ∆r−1
i · tP,i−1 ·∆ri

rP,i = rP,i−1 · r−1
P,i−1 ·∆ri · rP,i−1

The pattern of inside-out fusion is shown in fig. 9.



5.2 Fusion Technique
In case the gyroscope is to be used as a simple fall-back solution
when the other tracker fails, the formulas given in the previous sec-
tion can be directly applied. However, one should not forget to add
timestamp-based interpolation of the rotation increments, as com-
bined off-the-shelf trackers are unlikely to be synchronized. The
drawback is that no real sensor fusion takes place. Therefore this
would not result in an increased update rate or reduced jitter, com-
pared to using the absolute tracker alone.

For that reason, we will concentrate in this section on the im-
plementation of an (extended) Kalman filter for the fusion process.
We assume that the reader already has a basic understanding of the
Kalman filter’s prediction-update cycle (see e.g. [20] for an intro-
duction) and focus on the motion and measurement models. The
required Jacobians necessary for the implementation can easily be
computed using any computer algebra software. Other fusion tech-
niques can be used instead, such as the Unscented Kalman Filter
[9], which has shown to provide a slightly better accuracy at higher
computational cost [1].

Motion Model The state of the observed transformation is
modeled as a translation vector t, a translational velocity vector
v, a rotation quaternion r and a rotation velocity vector w. This
13-element state vector is associated with a 13× 13-element co-
variance matrix P. In the time update step for a time increment of
∆t, the following computations are performed:

ti = ti−1 +∆t vi−1

vi = vi−1

ri = ri−1 ·quat(wi−1,∆t)
wi = wi−1

Pi = Pi−1 +Q(∆t)

where Q(∆t) is the process noise covariance matrix. For the inside-
out fusion, both translation and its velocity have to be rotated by the
transformed rotation increments:

ti = rw,i · (ti−1 +∆t vi−1) · r−1
w,i

vi = rw,i ·vi−1 · r−1
w,i

with
rw,i = ri−1 ·quat(wi−1,∆t) · r−1

i−1

Note that we do not integrate state elements for drift correction, as
we assume this is already done inside the gyroscope.

Measurement Models The measurement equation ha for the
absolute tracker is trivial, as the measurements directly correspond
to elements of the state vector:

ha,i = (tT
i ,rT

i )T

Integrating the gyroscope measurements in the outside-in case also
is simple:

hoi,i = wi

For the inside-out case, the gyroscope measurement equation is the
same as the incremental rotation inversion equation given above, as
the gyroscope measurements are made in the coordinate frame of
the camera.

hio,i = ri ·w−1
i · r

−1
i

In all cases, the quaternion part of the state vector needs to be
normalized to |r| = 1 after the measurement integration. As the
quaternions q and −q describe the same rotation, and it is usu-
ally not possible to predict which version a tracker returns, the one
which is closer to the state variable must be chosen for the measure-
ment update.

For prediction, the time update step is applied without changing
the state. In order to determine the process noise matrix Q, we use a
non-linear minimization method (simplex), similar to what is used
in [3]. The function to be minimized is the sum of differences be-
tween the predicted pose and the actual tracker measurement, com-
puted over a recorded sequence of gyroscope and absolute tracker
measurements. Note that this minimization does not always con-
verge to the same minimum. Therefore, the initial value must be
chosen carefully. For optimal performance, the covariance matrices
of the individual tracker measurements should be known. A method
to compute them is described in [5]. The gyroscope covariances are
set to a very low value.

6 ALGORITHMIC EVALUATION

In order to evaluate whether the distinction between the inside-out
and outside-in cases is necessary, we performed an experiment, for
which we used an Xsens MT-9 inertial sensor. The magnetometers
were turned off, as we found that the magnetic field distortions in-
troduce additional error. Without the magnetometers, the sensor has
a bit of drift, but this is easily compensated by the fusion algorithm.

The hardware for this experiment consisted of a Logitech Quick-
Cam Pro 4000 USB web cam which was rigidly connected to the
inertial sensor. The camera was calibrated using OpenCV and ran
a square marker tracker also based on OpenCV, similar to the AR
Toolkit. Our marker tracker provides a covariance matrix with ev-
ery measurement which was used in the measurement update of the
Kalman filter. The camera ran at a rather low frame rate of 15Hz.

To get comparable results for the different fusion methods, we
recorded time-stamped measurements of the inertial sensor and the
marker tracking and ran the fusion algorithms off-line. Four differ-
ent camera motions were used:

• a “still” sequence where the camera was held by hand in a
position where the marker and the camera sensor were ap-
proximately parallel. In this case, the error in the measured
rotation is maximal. This is confirmed e.g by [14].

• a “slow rotation” sequence where the camera looked at the
marker in an angle of about 45deg and was rotated such that
no motion blur occurred and the marker tracker was able to
follow the marker.

• a “fast rotation” sequence which was similar to the slow ro-
tation, but with many fast rotations which caused the marker
tracker to frequently loose the marker.

• a “full motion” sequence, where the camera was both rotated
and translated.

For quantitative results, we calculated how well the Kalman fil-
ter was able to predict the next measurement of the marker tracker.
The translational error was converted to screen pixels (320× 240
resolution) using the known calibration matrix. The rotational er-
ror was directly computed in degrees. We compared four different
prediction methods:

• The outside-in motion model, evaluated on the transformed
gyroscope rotation and the inverted (with covariance propa-
gation) marker pose.

• The outside-in motion model, but without the gyroscope.

• The inside-out motion model, where the Kalman filter state
directly corresponds to the marker pose and the gyroscope
measurements are inverted.

• The inside-out motion model without the gyroscope data.



outside-in inside-out
w/ gyro w/o gyro w/ gyro w/o gyro

still 22.8 68.0 1.2 1.2
slow rotation 2.6 5.6 3.0 5.2
fast rotation 9.1 94.1 10.8 91.0
full motion 6.5 11.0 7.3 9.3

Table 1: Average prediction error in pixels

outside-in inside-out
w/ gyro w/o gyro w/ gyro w/o gyro

still 5.2 10.0 3.3 4.5
slow rotation 0.53 1.0 0.51 1.0
fast rotation 1.2 11.0 1.2 9.6
full motion 0.91 2.0 0.87 2.0

Table 2: Average angular prediction error in degrees

We computed different tuning parameters for each of the four cases,
using the “full motion” sequence.

The results are shown in tables 1 and 2. The advantage of using a
gyroscope for stabilization is clear, especially for the fast rotations.
Both rotational and positional prediction accuracy is improved. The
inside-out and outside-in motion models produce comparable re-
sults is most cases, with the exception of the “still” sequence where
the marker tracking has a very bad rotational accuracy. Here the
inside-out motion model has a clear advantage.

7 DYNAMIC GYROSCOPE FUSION

After the more theoretical description of the algorithms used for
transformation, calibration and fusion of gyroscope data, we come
to an actual application in a real Ubitrack system. The general ar-
chitecture of our system is presented in [8], and in this section we
will focus on describing the concrete system instance as well as the
reconfiguration mechanism that was added.

7.1 Setup
Our scenario consists of a mobile user, equipped with some tracking
hardware, who is standing in the hallway in front of our lab. Using
his camera, the user can track a marker in front of the door and see
a virtual sign inviting him to come in. Looking in through the door,
he can already see an augmentation, a virtual sheep, standing in the
middle of the lab. As he is entering the lab, the marker tracking
becomes unavailable, but the outside-in tracking inside the lab is –
transparently to the application – taking over. A map of the situation
and a picture of the mobile setup is shown in figure 11.

The hardware setup is centered around an Xsens MT-9 inertial
sensor, which is dynamically fused with three other tracking sys-
tems:

• The first tracker is a Ubisense wide-area radio frequency loca-
tion system that covers the whole lab. It gives position updates
at a frequency of about 1Hz with an accuracy of about 15cm.
As no orientation is provided, the “fusion” consists of com-
bining the magnetometer-stabilized orientation from the in-
ertial sensor with the 3D-position from the Ubisense system.
Due to magnetic field distortions, the resulting orientation is
accurate to about 10deg. The Ubitag (RF emitter) is the black
box in the middle of picture 11.

• In the center of the lab we have installed a high-precision ART
infrared-optical tracker, which covers an area of about 4× 4
meters using three cameras. In order to be tracked by this sys-
tem, the mobile setup includes a set of retro-reflective marker
balls. Fusion of the ART with the gyroscope is performed us-
ing the outside-in fusion technique described in section 5.2.

A 6×6 covariance matrix for each measurement is computed
using the method described in [5].

• Tracking outside the lab is provided by our own marker track-
ing algorithm, which works similar to the AR Toolkit. The
most notable difference is that our system provides a 6× 6
covariance matrix that describes the accuracy of each mea-
surement. This information is used in the inside-out fusion
algorithm. Note that the firewire camera on the mobile setup
is used both for marker tracking and to provide video-see-
through AR during the entire demonstration.

The spatial relationship graph of the setup is shown in figure 10.
Note that the edges representing the ART data, the Ubisense posi-
tion and the marker tracker can be unavailable, depending on the
current situation.
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Figure 10: Spatial Relationship Graph of the dynamic fusion setup

7.2 Software Architecture
Our software system, shown in figure 12 consists of a Ubitrack
server and three different clients. In detail, the components fulfill
the following functions:

Ubitrack server The central component of our system is the
Ubitrack server, which coordinates the various clients. After
startup, the internal SRG of the server is empty, as is its list of
patterns. When a client connects, it sends the server a list of the
SRG fragments it knows about, and a list of patterns. As each pat-
tern is associated with a data flow component available at the client,
this list of patterns essentially describes the processing capabilities
of the client. Additionally, the client can send a set of queries for
nodes and/or edges.

From the list of partial SRGs sent by the clients, the server as-
sembles the global SRG and applies the patterns to infer new edges.
When a query matches an edge, the server generates a data flow
description by descending the tree of dependent edges. If multiple
clients are involved, the data flow is distributed among these clients.
This way, one client can be instructed to send data to another client
to fulfill its queries. Note that the communication of tracking data
at runtime is done in a peer-to-peer fashion, rather than over the
server, in order to reduce the system’s latency. As the communica-
tion is coordinated by the server, we call this a “centrally coordi-
nated peer-to-peer architecture”.
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Figure 12: Software architecture of the dynamic gyroscope fusion setup

Mobile client The mobile client is responsible for the SRG that
describes the mobile setup (left of the gray dashed line in figure
10), which it sends to the server at startup. As the mobile client
contains the rendering “application”, it also sends a query for the
pose of all renderable objects wrt. to the camera coordinate frame.
In the concrete setup, these are the “virtual sheep” and the “hallway
sign” objects. When the client receives a data flow description as a
response from the server, it is instantiated and the resulting tracking
information is used to overlay the virtual objects onto the camera
image.

Lab client This client runs on a computer in the lab and knows
about the ART and Ubisense trackers, as well as the virtual ob-
jects and some static transformations in between (right of the gray
dashed line in the SRG). It is a pure tracking client, and thus has no
queries of its own.

Reconfigurator Given only the server and the mobile and lab
clients, the system would not be able to present any augmentations.
As the actual tracking edges connecting the mobile setup with the
lab part do not belong to either of the above clients, they are not
part of the initial global SRG. Theoretically, it would be possible
to make the mobile setup query the system for all “marker” ob-
jects (nodes), and similarly, the lab clients could query for all in-

frared fiducial nodes and add the respective edges to the SRG. How-
ever, adding edges to all available markers/fiducials would cause
the server to assume that they are actually visible to the tracker and
start using them in data flows. In a larger setup with multiple rooms
and many markers, this would waste processing time and possi-
bly cause confusions if fiducials are not globally unique. Also, the
server could prefer an unavailable tracker to an available but less a
accurate one. Therefore, an edge should only be added to the SRG
when there is a good chance of actually receiving tracking data from
it.

In our Ubitrack system, we solve this by assuming that there is
always enough information available to at least decide which fidu-
cials are close to a given sensor. This kind of coarse tracking in-
formation could come e.g. from a WLAN tracking system. In our
case, we are using the Ubisense for this task.

The reconfigurator client monitors the data from the Ubisense
system and, based on this information, adds or removes edges in the
SRG. The reconfigurator is given an XML configuration file with a
number of regions that can be defined by either the convex hull of
a set of points or by presence/absence of tracking data. Depending
on whether the client is inside or outside a region, SRG edges are
added or removed. In the dynamic reconfiguration scenario, we use
one “lab” region that is defined by availability of Ubisense data and



one smaller “ART” region inside the lab.

7.3 Calibration and Results

In order to align the various sensors with each other, different cal-
ibration methods have been applied. The gyroscope was aligned
with the camera using the rotation-only hand-eye-calibration (HEC)
described in section 4. After that, a traditional offline hand-eye-
calibration algorithm was used to determine the transformation be-
tween the camera and the ART marker. In order to align the
Ubisense with the ART system, we applied an absolute orientation
algorithm on data gathered by moving around a target trackable by
both systems. As the world coordinate frame of the XSens is de-
fined by gravity and the magnetic field, we were able to compute
the static rotation between the XSens and the ART using the online
hand-eye-calibration algorithm again.

The system can be seen in action in the accompanying video.
It starts with the mobile setup standing in the hallway. The marker
tracking is fused with the gyroscope to display a welcome sign. Be-
cause of the fusion, the orientation tracking continues even when
the marker is not visible. In the SRG, the marker is connected to
the visualization inside the lab, and the user can look through the
door to see it. When the user enters the lab, the Ubisense system
starts tracking, the marker tracking edge is removed from the SRG,
and the server reconfigures the data flow to use the Ubisense sys-
tem together with the compass-stabilized gyroscope. As the mo-
bile setup enters the ART tracking region, the reconfigurator client
detects this from the Ubisense data and adds an ART edge to the
SRG. The server reacts to this by sending the mobile client a new
data flow, now fusing the ART with the gyroscope. The robustness
of the fusion is again demonstrated by putting a plastic bag over the
infrared fiducial. In this case, the inertial unit still tracks the orien-
tation, but no positional updates are available. As the user leaves
the lab, the whole process runs in reverse order.

8 CONCLUSION

In this paper we have shown that the Ubiquitous tracking tool set,
consisting of spatial relationship graphs and patterns is very use-
ful to analyze tracking setups including gyroscopes. It allows a
Ubitrack system to automatically infer occasions for gyroscope fu-
sion in dynamically changing tracking situations. We have derived
new patterns that allow the transformation of incremental rotation
and rotation velocity between different coordinate frames, which
enable a deeper understanding of the situation. By looking at the
SRG it became clear that the gyroscope alignment is related to the
well-known hand-eye calibration problem, for which we presented
a recursive solution based on the rotation part of the Tsai-Lenz al-
gorithm. For the fusion of absolute tracking with the gyroscope, an
extended Kalman filter implementation was described, with differ-
ent motion models and measurement equations for the inside-out
and outside-in case. This was first evaluated in a small experiment
and then applied in a real Ubiquitous tracking system, where the
gyroscope was dynamically fused with three different other track-
ers as a user moved from one room into another, based only on the
available SRG structure.
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