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Kristóf Ralovich† and Milán Magdics‡

Department of Control Engineering and Information Technology

Budapest University of Technology and Economics

Budapest, Hungary

Abstract
We propose an effective method to enable recursive ray tracing triangular scenes using contemporary
real-time graphics pipelines of digital computers. So far, general purpose computations such as ray
tracing utilized the programmable pixel shader for computation. Lengthy algorithms were subdivided to
continue-and-restart-able parts (computing kernels) to enable implementation as multi-pass rendering.
Discussing a fundamentally different method, we are representing rays with geometry, maintaining a
one-to-one correspondence between rays and point primitives. Exploiting the geometry amplification
capability of modern pipeline, we are utilizing the geometry shader to emit multiple secondary rays.
Our approach to recursive ray tracing is influenced by stream computing, circulating the data flow
without using a stack, employing intermediate pipeline stage to feedback transformed primitives before
producing the final color by rasterization of point primitives. An effective implementation employing
the uniform grid space subdivision scheme is described.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism: Raytracing

1. Introduction

Global illumination techniques and thus recursive ray
tracing is gaining increasing popularity in real-time
image synthesis practice due to widespread availability
of consumer level fast parallel digital computer and
the algorithmic improvements of the recent years.

Ray shooting maps well and easily to GPUs by the
independent nature of rays, and using the graphics
pipeline to implement ray tracing had a well known
stream computing approach so far: in each rendering
pass rasterizing a view-port sized quadrilateral to ac-
tivate the fragment shader on a regular 2D matrix of
pixels where every pass operates on one single ray gen-
eration only. A ray generation is for example the first
level of shadow rays only (without mixing different
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type of rays). Also, e.g. the first bounce of specular
reflected rays form an other ray generation.

This paper discusses a fundamentally different con-
figuration of the pipeline, where individual rays are
represented by point primitives as opposed to pix-
els. Recursion required for12 ray tracing is achieved
by feeding back the transformed primitives to the be-
ginning of the pipeline instead of using a large num-
ber of textures (render targets) to emulate a stack to
store the state of computation. Decomposing5 the ray
tracing algorithm was historically required because
of tight restrictions posed by the GPU on the static
and dynamic instruction counts in a shader program.
These constraints are not a problem any more, but un-
derlying architectures are still poorly suited for stack
memory and thus shading languages can not support
recursive function calls directly.
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Figure 1: (a)(b)(c) Images generated at interactive rates using the discussed algorithm using geometry shader
and transform feedback. Rays are represented in the pipeline with geometry, viewport is 5122 sized. Images from
left to right in respective order: the ”Dragon” shadowcasted, the ”Horse” scene with specular materials, and the
”Torus Knot” scene with reflections and shadows from a single light source. (d) Depicts the cost of finding the
intersection for each ray, speed up impact of the employed uniform grid space subdivision is apparent.

2. Previous work

Applying the processing power of programmable GPU
to speed up ray tracing motivated many researchers of
the field of real time computer graphics.

Carr et. al.1 discovered that ray-object intersections
may be computed in a fragment shader, later others
managed to apply a great variety of different tech-
niques such as space subdivision and partitioning (uni-
form 3D grid5,6, kD-tree3,9, BVH11, etc.) to the GPU
to reduce the number of intersections finding the clos-
est visible hit. Szécsi8 and Roger et. al.7 experimented
with ray space hierarchies for logarithmic speedup
culling away rays, while Carr et. al.2 used geometry
images to store the scene GPU memory friendly. The
common concept of these methods was using the frag-
ment shader to do the necessary computations.

Szirmay et. al.10 provides a comprehensive overview
of image space methods, practical global illumination,
and ray tracing on the GPU.

Recent research shows high performance ray trac-
ing implementations4 are possible using the CUDA
general purpose parallel programming architecture.
CUDA provides direct C language interface to the
graphics hardware without special knowledge of pro-
grammable graphics pipeline, but we are still focusing
on a method layered over graphics APIs because of
their wider general availability.

3. Algorithm overview

Let us summarize the structure of our algorithm:

1. Set up two vertex buffers (VB) with enough space.
2. Fill one of the VBs partially with point primitives

representing primary rays and bind it as drawing
source.

struct Hit

{

vec4 pos; // point primitive

vec3 orig;// ray origin

vec3 dir; // ray direction

vec2 uv; // baryentric hit coords.

float t; // ray parameter

int idx; // hit triangle index

int state;// state vector for

int type; // inter pass comm.

};

Listing 1: Data structure holding the hit record.

struct PackedHit

{

vec4 pos;

vec4 orig_t;

vec4 dir_idx;

vec4 uv_state;

};

Listing 2: Structure encapsulating a ray and
corresponding hit record. Encoded as four component
floating point vectors. Passed to the pipeline as a point
primitive with associated vertex attributes

3. Bind the other VB for stream output destination.
4. Set up the pipeline with the discussed shaders (sec-

tion 4.1).
5. Rasterize (draw) the point primitives in P number

of passes without changing the shaders and without
any CPU intervention. A rendering pass consists of
the following tasks:

a. Calculate intersection in the vertex shader.
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Figure 2: Recursion in the pipeline. Rays are repre-
sented by point primitives with additional vertex at-
tributes to hold the hit record. (a) Intersection in
the vertex shader. (b) Geometry shader emitting sec-
ondary rays and terminating finished rays. (c) Final
shading and color compositing in fragment shader.

b. Depending on material properties, emit sec-
ondary rays in the geometry shader.

c. Use the stream out stage to feedback trans-
formed points primitives.

d. Fragment shader computes color at valid hits.
e. Blend the resulting pixel colors together.

6. Swap the VBs. This is called ping-ponging.

4. Algorithm details

The reason we are required to use two vertex buffers
is that the source of drawing and the destination of
stream output cannot be the same object.

Prior to allocating the VBs, we must know (Fig-
ure 4(a)) their maximum sizes: SV B = w × h × (G +
G′) × SV , where w and h are the dimensions of
the viewport, G and G′ are the maximum and sec-
ond largest number of ray generations emitted in each
depth of ray tracing recursion, and SV is the size of
a vertex (i.e. the ray structure including a hit record,
which is 64 bytes in our case, see code Listing 2). Note
that this calculation is not dependent on the number
of triangles, and scales with the screen size.

4.1. Pipeline setup

The algorithm is implemented using three stages of the
programmable pipeline (Figure 2) and the transform
feedback (stream out) functionality. Listings 3, 4,
and 5 describe the three shaders in pseudo code.

One could have implemented the functionality of the
vertex shader in the geometry shader as well, however

our separation of functionality is geared towards high
performance: shorter shaders result in lower branching
divergence behavior and thus more coherent memory
access patterns.

4.2. Shaders

In the vertex shader vertex attributes of point prim-
itives (rays) are loaded from the VB. Ray intersection
with the scene is carried out, hit record is updated ac-
cordingly and output. As an additional optimization,
the ray is checked for intersection against axis aligned
bounding box of the scene. If there is no hit, the ray
is marked for termination in the subsequent geometry
shader.

The output of the vertex processor is considered as
the hit record. Depending on the ray state and mate-
rial properties of the intersection, the ray is terminated
(not emitted) or further secondary rays (shadow, re-
flection) are emitted. Emitted new rays are coupled
with a hit record indicating intersections should be
calculated in the next vertex shader pass, and to be
skipped in the following pixel shader in this pass (be-
cause shading requires a valid hit record first). Rays
that have been written to the framebuffer in the pre-
vious pass are not processed in the geometry shader
and are terminated (not emitted) early without pro-
cessing. Transform feedback (Stream Output) is con-
figured to allow receiving multiple output primitives
per each input. If there is anything to output, the ge-
ometry shader is emitting rays in a fixed local order:
first the input ray, later the shadow and finally the
specular reflected ray.

Color of rays with valid hit records is calculated em-
ploying the Phong shading model and written into the
framebuffer in the pixel shader, then a special blend-
ing operation composites visible color, shadowedness,
and the secondary color.

4.3. Rendering

In order to visualize rays in the framebuffer, a view-
port sized 2D grid of point primitives is rasterized on
a plane perpendicular to the view direction of the vir-
tual camera. The positions of the point primitives are
set up so that rasterization assigns them to the pixel
centers, which will result in the whole coverage of the
screen.

We are exploiting that the number of primitives out-
put from the geometry shader is not needed to be
queried back to the CPU to issue a draw call sourcing
those vertices.

As stated in section 4.1, the geometry shader has a
fixed output order of rays. The graphics pipeline has a
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Figure 3: The contribution of eye rays (a), reflected rays (b) and shadow rays (c). The right most (d) image
shows the final composited image.

very unique property†: primitives hit the framebuffer
in the order listed in the VB (if no other indexing is
used, like in our case), this is necessary for our algo-
rithm to work, since the processing order of rays must
not be changed. Imagine the specular contribution is
added to a pixel before processing the previous shadow
ray: the shadow ray would amortize the influence of
the reflected ray instead of the previous hit.

The P number of rendering passes – required for
the correct image – equals to the depth of the ray
tracing depth. That is e.g. 2 for primary rays and one
bounce (since shadow rays and reflected rays spawned
by eye hits are handled together in the same pass).
See Figure 4(a).

In order to enable the GPU accessing the scene
data, texture memory is employed in a read only man-
ner (in the same way as6). We are able to use world
space coordinates for the scene, so we do not have
to transform rays into object space. Using a uniform
space subdivision scheme requires storing the list of
referenced objects for each voxel of the grid. This is
stored in a RGB 3D texture, where each grid cell is
encoded in one texel. The list of referenced objects is
stored tightly packed and each texel corresponds to
a pointer to actual triangle data. After two levels of
indirection, actual triangle data is stored in two other
3D textures both featuring 4 depth slices. Texels with
the same (X,Y ) coordinates in different Z slices are
storing vertex, normal and material information be-
longing to the same single triangle. Thanks to this
“co-location” texture coordinates used for addressing
a triangle’s attributes need to be computed only once
in the shaders.

† Such kind of synchronization can easily be costly to im-

plement in e.g. CUDA.

4.4. Blending

Different ray generations are intermixed in the vertex
buffer, and thus final color compositing must be capa-
ble of both extinguishing radiance (in case of shadows)
and adding radiance (for reflections rays). Considering
the case of a single point light source, shadows and one
bounce of reflections additional to ray casting, Equa-
tion 1 shows one possible‡ simple compositing setup
using fast hardware blending (note that RGBsrc must
be pre-multiplied with the ρ reflectivity to get correct
results) in only a single rendering pass.

RGBout = (1.0 ×RGBsrc) + (αsrc ×RGBdst) (1)

αsrc =

{
1.0 for eye rays
0.0 for shadow rays
1.0 for reflected rays

RGBsrc =

{
(Rsrc, Gsrc, Bsrc) for eye rays
(1.0, 1.0, 1.0) for shadow rays
ρ · (Rsrc, Gsrc, Bsrc) for reflected rays

This equation lets shadow rays to extinguish the con-
tribution from primary rays. The case of more ray gen-
erations and/or light sources require different and a
more complicated compositing approach. Ray genera-
tions should be sorted and rendered to multiple render
targets that blending passes may blend together.

5. Results

Comparison of the distribution of time spent§ in the
shaders is summarized in Table 1. From these results

‡ An other option is the use of GL ARB color buffer float
extension, that widens the possibilities of custom blending,

and also provides mechanism to disable clamping of color

values before blending and use of negative alpha values.
§ The presented data is the % of executed instructions dis-

tributed between shaders, but since the hardware is run-
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Figure 4: (a) The required number of rendering passes equals to the recursion depth, 2 in the figure (blue,
green, and pink frames represent the first, second, and possible third respectively). Each row depicts a different
ray generation. Blue areas with dark dots represent the input of stages of a shader program (vertices, fragments)
labeled by the task carried out in that shader. Dark red frame shows the maximum size each of the ping-ponging
VBs must be capable to accommodate. In the presented case SV B = 512 × 512 × (2 + 1) × 64 bytes = 48 Mbytes.
(b) Rendering time (in milliseconds) comparison of our method with previous work6. The benchmark environment
is the same as for Table 3. We suspect that the 2-3 fold worse performance is due to our using of “fat” (64 byte)
primitives.

of naive intersection we conclude, that computation
times are limited by vertex shader, that is by the naive
intersecting. This is a clear indication that more work
may be loaded on the geometry and fragment shaders.

The experiments also showed that the pipeline is
compute bound, with this amount of computation the
cost of more texture reads may be covered transpar-
ently. This leaves us opportunities for improved shad-
ing calculations using BRDF sampling.

6. Conclusion and Further Works

4th generation GPUs are built on a unified device ar-
chitecture. That means the GPU contains only one
type of processing unit and that very same unit ex-
ecutes the different types of shaders. This mapping
of computations to hardware resources would suggest
that it does not matter which type of shader we use to
execute the computations and texture reads from, the
performance should stay constant. Figure 4(b) shows
that this is not true, depicted are our vertex shader¶

based results compared to the previous results6 based

ning the shader programs on the same unified processors

this translates to accurate time measures.
¶ Shader where the most expensive operation, the inter-

section test is executed.

on the fragment shader. We have to conclude that us-
ing the vertex shader for intersection calculations is
slower than using the pixel shader. This is probably
the side effect that we are using “fat” vertices, each
point primitive is made up of 64 bytes. We have ob-
served although the geometry shader also has some
overhead, the vertex shader even without a geometry
shader performs 2-3 times worse‖ than the fragment
shader (see Table 2. for measurements of pure ray cast-
ing).

Also moving the light source in the scene incurs high
variability in rendering times, this is due that the cost
of shadow rays is highly dependent on the position of
the light source.

Although efficiency of our setup is apparent, fur-
ther investigating should be conducted with the cur-
rent state-of-the-art space subdivision and partition-
ing methods (kD-tree, BVH, ray hierarchies, etc.) to
enable fair comparison with previous techniques using
full screen quads.

Extending our work in the future with a best effi-
ciency scene hierarchy would be very interesting.

Our system may be optimized to calculate primary

‖ On a Geforce 8600 GPU.
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intersections through rasterization of eye rays for the
highest possible performance on the graphics hard-
ware. This would only require changing the first pass
of the algorithm.

We found that implementing a ray tracer in a
graphics API involves a notable runtime overhead.
This limitation can easily be overcome once high
performance streaming computing software (OpenCL,
CUDA) gains more widespread availability.
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Appendix A: Shader code

#define inVS() \

Ray ray=Ray(orig_t.xyz , dir_idx.xyz);\

Hit hit=Hit(uv_state.x, uv_state.y, \

orig_t.w,int(dir_idx.w));\

int state=int(uv_state.z); \

int type=int(uv_state.w);

#define outVS () \

gl_Position = gl_Vertex; \

orig_t1.xyz = ray.orig; \

orig_t1.w = hit.t; \

dir_idx1.xyz = ray.dir; \

dir_idx1.w = float(hit.idx); \

uv_state1.xy = vec2(hit.u, hit.v); \

uv_state1.z = float(state); \

uv_state1.w = float(type);

void main()

{

inVS();

if(state == 0){// generate eye rays

ray=Ray(cameraPos ,normalize(vec3(

gl_Vertex.x,gl_Vertex.y, -1.0)*rot3));

hit.t = INF;

hit.idx = -1;

state = 1;

type = 0;

hit = intersect_grid(ray , hit.t);

}

#if defined(SHADOWS) || defined(

RECURSION)

else if(state == 1) {

hit = intersect_grid(ray , hit.t);

}

#endif

outVS(); // else state == 3

}

Listing 3: GLSL code for the vertex shader.
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void main()

{

inGS();

if(state > 1)

return;

if(hit.idx == -1)

return;

emitPassThrough ();

if(type != 0 || emitNoMore >0)

return;

#if defined(SHADOWS) || defined(

RECURSION)

lookupNormal(hit , hitN);

vec3 hitP = ray.orig + ray.dir*hit.t

+ hitN*EPSILON;

#endif

#ifdef SHADOWS

vec3 toLight = lightPos - hitP;

float lightDist = length(toLight);

Ray shadowRay = Ray(hitP , toLight/

lightDist);

Hit shadowHit = Hit(0.0, 0.0,

lightDist , -1);

state = 1;

type = 1;

emitShadowRay ();

#endif

#ifdef RECURSION

Ray reflRay = Ray(hitP , reflect(ray.

dir , hitN));

Hit reflHit =Hit(0.0, 0.0, INF , -1);

state = 1; // intersect in

next pass , FS discard in this

pass

type = -1;

emitReflRay ();

#endif

}

Listing 4: GLSL code for the geometry shader.

void main()

{

Ray ray=Ray(orig_t2.xyz ,dir_idx2.xyz);

Hit hit=Hit(uv_state2.x,uv_state2.y,

orig_t2.w,int(dir_idx2.w));

int state = int(uv_state2.z);

int type = int(uv_state2.w);

if(state < 3)

discard;

if(type == 0)

{

Ray eyeRay = ray;

Hit eyeHit = hit;

if(eyeHit.idx == -1)

{

gl_FragColor = vec4(backgroundColor.

rgb , 0.0);

return;

}

vec3 eyeHitPosition = eyeRay.orig +

eyeRay.dir * eyeHit.t;

vec3 lightVec = lightPos -

eyeHitPosition;

lookupNormal(eyeHit , N);

vec3 L = normalize(lightVec);

float NdotL = max(dot(N, L), 0.0);

vec3 diffuse = lookupTriangleColor(

eyeHit.idx); // material color of

the visible point

gl_FragColor = vec4(diffuse * NdotL ,

1.0);

return;

}

#ifdef SHADOWS

if(type > 0)

{

Hit shadowHit = hit;

if(shadowHit.idx == -1)

discard;

gl_FragColor = vec4(-1,-1,-1, 0.0);

return;

}

#endif

#ifdef RECURSION

{ // else type < 0

Ray reflRay = ray;

Hit reflHit = hit;

if(reflHit.idx == -1)

discard;

vec3 reflHitPosition = reflRay.orig +

reflRay.dir * reflHit.t;

vec3 lightVec = lightPos -

reflHitPosition;

lookupNormal(reflHit , N);

vec3 L = normalize(lightVec);

float NdotL = max(dot(N, L), 0.0);

vec3 diffuse = lookupTriangleColor(

reflHit.idx);

gl_FragColor = vec4(diffuse*NdotL

*0.25 1.0);

}

#endif

}

Listing 5: GLSL code for the fragment shader.



Ralovich et al / Recursive Ray Tracing in Geometry Shader

Scene (#∆) Vertex Shader (%) Geometry Shader (%) Fragment Shader (%)

room3 (12) 67.43 / 48.07 / 54.73 1.14 / 5.15 / 5.05 31.51 / 46.79 / 40.21

Cornell Box (36) 85.34 / 77.43 / 72.70 0.50 / 2.47 / 2.68 14.14 / 20.16 / 24.62

Knight in Box (646)
(198 animated frames) 99.20 / 98.51 / NA 0.03 / 0.18 / NA 0.76 / 1.32 / NA

Table 1: Computation time distribution between shaders using naive intersection testing. Numbers are for ray
casting, shadow casting and shadow casting with single reflections with naive intersection testing (not using the
uniform grid). All images are ray traced in 512×512 viewport, all rays are intersecting the scene. GPU instrumen-
tation details are as reported by NVIDIA PerfHUD on a single Geforce 260 GTX, as an average of 50 independent
experiments.

Our method with Our method without 6 using
passthrough GS Geometry Shader Fragment Shader

Rays / second (million) 3.322,484 4.890,746 10.485,760

Ray shooting time (ms) 78.9 53.6 25.0

Table 2: Pure ray shooting performance of different setups of the graphics pipeline. All images are ray traced
in 512 × 512 viewport, all rays are intersecting the Torus Knot scene consisting of 1024 triangles. GPU time
was computed asynchronously as reported by GL EXT timer query on a single Geforce 8600, as an average of 50
independent experiments (by removing the best and worst from 52 independent experiments).

Cornell Box Cornell Knot Dragon Fairy Forest Happy Buddha Horse Stanford Bunny

#∆ 36 1,024 871,414 174,117 1,087,716 96,966 69,451

O
u
r

M
et

h
o
dRC 64.4 104 481 926 1283 526 295

SC 213 381 824 1512 1390 714 419
RT 353 664 2284 2314 1497 878 529

P
re

v
io
u
s6 RC 17.5 26.8 149 590 777 211 109

SC 48.5 75.3 327 712 708 312 182
RT 119 222 1334 1623 1082 594 381

Table 3: Ray tracing performance in milliseconds. Numbers are for ray casting (RC), shadow casting (SC) and
shadow casting with single reflections (RT). All images are ray traced in 512 × 512 viewport. GPU time was
computed asynchronously as reported by GL EXT timer query on a single Geforce 8600, as an average of 50
independent experiments (by removing the best and worst from 52 independent experiments).


