Ultrasound goes GPU: real-time simulation using CUDA
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ABSTRACT

Despite the increasing adoption of other imaging modalities, ultrasound guidance is widely used for surgical
procedures and clinical imaging due to its low cost, non-invasiveness, and real-time visual feedback. Many
ultrasound-guided procedures require extensive training and where possible training on simulations should be
preferred over patients. Computational resources for existing approaches to ultrasound simulation are usually
limited by real-time requirements. Unlike previous approaches we simulate freehand ultrasound images from CT
data on the Graphics Processing Unit (GPU). We build upon the method proposed by Wein et al. for estimating
ultrasound reflection properties of tissue and modify it to a computationally more efficient form. In addition
to previous approaches, we also estimate ultrasound absorption properties from CT data. Using NVIDIA’s
“Compute Unified Device Architecture” (CUDA), we provide a physically plausible simulation of ultrasound
reflection, shadowing artifacts, speckle noise and radial blurring. The same algorithm can be used for simulating
either linear or radial imaging, and all parameters of the simulated probe are interactively configurable at run-
time, including ultrasound frequency and intensity as well as field geometry. With current hardware we are able
to achieve an image width of up to 1023 pixels from raw CT data in real-time, without any pre-processing and
without any loss of information from the CT image other than from interpolation of the input data. Visual
comparison to real ultrasound images indicates satisfactory results.
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1. INTRODUCTION

Despite the increasing adoption of Computed Tomography (CT) and Magnetic Resonance Imaging, medical
ultrasound (US) remains one of the most used imaging modalities, due to its low cost, widespread availability
and high patient acceptance. However, procedures like US-guided needle insertions require a high degree of
hand-eye coordination and spatial reasoning, so extensive training is needed to gain sufficient experience, and
for ethical and patient safety reasons it is desirable to train surgeons on simulations rather than on patients.!

1.1. Related Work

Real-time simulation of US images has been claimed for at least a decade now, with advances mainly being made
in the realism of the simulation and the amount of manual annotation required for preparation.

Different approximating methods have been proposed since Jensen’s landmark paper? about exhaustive sim-
ulation on the scatterer level and Aiger and Cohen-Or’s paper® about real-time simulation from 3-D US. One
drawback of Jensen’s approach is the long time needed for simulation, 11 hours for one image as stated in the
original publication. Slicing 2-D images from a 3-D US volume, like proposed by Aiger and Cohen-Or, is strongly
dependent on the acquisition parameters and the quality of the prerecorded 3-D data, including artifacts like
shadows.

Many recent approaches, as proposed e.g. by Hostettler et al.,* Zhu et al.,> Wein et al..% and Shams et al.,”
show promising results, but detailed information about the achievable image resolution is commonly omitted.
Possible approaches include an estimation of acoustic properties from CT data* %7 or slicing from a 3-D model,
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based on a segmentation of CT data, using synthetic 3-D textures, based on real 2-D ultrasound image samples.®
While the latter approach produces convincly textured organs, it can only be as accurate or detailed as the
underlying segmentation. Recently, an approach has been presented by Shams et al.” to combine both an
estimation of acoustic properties from CT data, similar to Wein et al.,® and a scatterer image texture computed
using the FIELD II algorithm developed by Jensen and Nikolov.®

Usually, there exists a trade-off between realism of the simulation and the computation effort needed. Har-
nessing the highly specialised hardware on the Graphics Processing Unit (GPU) of modern graphics cards offers a
possible solution to simulating freehand US with high resolution in real-time. Taking advantage of GPUs requires
additional effort for the parallel implementation of algorithms. However, the increasing number of publications
around this topic shows that there is a significant interest and that the design of an implementation on GPU
will be useful to the scientific community. It is clearly necessary to accelerate computation in order to achieve
realism and real-time performance at the same time, and it is especially promising to use the parallel processing
capabilities on the GPU.

2. DESCRIPTION OF PURPOSE

The purpose is to develop a physically accurate simulation of freeehand ultrasound in real time, that incorporates
acquisition parameters such as ultrasound frequency, intensity, and gain, as well as tissue properties. To achieve
this we accelerate the simulation by using the GPU for parallel processing. All three approaches* ¢ mentioned
above involve some form of ray-casting, and as a consequence not all computations can be done on each pixel
separately and to some extent synchronisation is needed on the GPU.

Vidal et al.? already published a description of an implementation on GPU. However, their simulation still
has to be computed partly on the CPU, and for reproducing US-like reflections they rely on a rather vague
“enhancement” of horizontal edges without further consideration of tissue types or probe geometry. Zhu et al.®
use the GPU only to simulate radial blurring.

The well-known OpenGL Shader Language (GLSL) does not offer synchronisation between threads on the
GPU, and thus we use NVIDIA’s “Compute Unified Device Architecture” (CUDA). CUDA 1.1 does not yet
include support for 3-D textures (those are scheduled for the upcoming release of CUDA 2.0), so we present a
modified algorithm that is feasible in 2-D. From this, not only implementations in CUDA will benefit, but this
in general reduces the computational complexity. For slicing 3-D data established techniques in GLSL can be
used.

3. METHODS

The developed simulation framework consists of several stages as depicted in figure 1. First, given the position
and orientation of the probe, a 2-D reformatted image is extracted from the 3-D volume. Then, the physical
phenomena involved in US image generation are simulated from the data. Thus, reflection, absorption, and
transmission are computed taking into account the properties of the structures and their boundaries (acoustic
impedance, orientation) in interaction with US waves. Finally, speckle noise and blurring are added in a post-
processing step, resulting in an image (see figure 9) that can be updated in real time according to the user-defined
parameters.

3.1. Acoustic Impedance

It is possible to assume an approximately proportional relation of X-ray attenuation to tissue density. However,
the assumption of a constant speed of sound is invalid, as e.g. the speed of sound in bones reaches up to
4330 m/s,'0 i.e. almost three times the speed in soft tissue, 1540 m/s. For a better estimation of the acoustic
impedance we use use quadratic extrapolation from the known values of air, water, and an estimated value for
bone: Z =7 Mrayl and ¢ = 1000 HU. For a screen shot of original CT data and estimated acoustic impedance
cf. figure 3.
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Figure 1. From 3-D CT data, 3-D noise, probe position, and acquisition settings an US image is simulated.

3.2. Reflection

It can be shown'? that as in optics, Snell’s law applies to ultrasound, and the intensity reflected at a specular
interface can be computed as

= (1)
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where Z; and Z5 are the acoustic impedances of the two types of tissue and 0; and 6, are the angles of incidence
and transmission, respectively. This equation is usually simplified to the case of perpendicular incidence, where
no or unreliable information about the local normal exists.

However, we’re only interested in intensity that is reflected back to the transducer and in the general case we
consider diffuse rather than specular reflection. Assuming ideal diffuse reflection, the same intensity is reflected
in all directions across a hemisphere in 3-D (respectively a semicircle in 2-D). A general model of diffuse reflection
is Lambert’s cosine law

— = cos (0) (2)

where 6 is the angle between the incident radiation and the surface normal. Usually, a combination of diffuse
and specular reflection is approximated by using

1,
= =cos (/)" (3)
I;

with n = 1 for a perfect diffuse reflection and n > 1 for a combination of specular and diffuse reflection.
Specular reflection does occur in US images, e.g. at tissue-bone interface, but the scale of inhomogeneities relevant
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Figure 2. Known values for tissue density and acoustic impedance of different tissue types (water, , with linear and
quadratic fit functions, values from Schneider et al.*!

Figure 3. Screen shot of our original CT data (left) and estimated acoustic impedance (right).

to US reflection (wavelength approx. 0.6 to 0.15 mm) is beyond the usual resolution of abdominal CT images
(e.g. 0.88 mm), so we may choose n = 2, as it further simplifies the equations.

We combine cos (0)2 with equation 1, as proposed by Wein et al.® Substituting the cosine with the dot
product of a unit vector d in ray direction and the normalised gradient vector, we derive
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where d? -V Z () equals the gradient magnitude along the ray, which can be easily computed in the simulated
2-D US scan plane. Note that there is no longer information needed about the original 3-D gradient, so all
subsequent computation can be done in 2-D.

3.3. Absorption

Absorption, i.e. energy transfer into a localised heating of the tissue, accounts for nearly all US attenuation in soft
tissue, at least 95% according to Lyons et al.'® Ultrasound absorption can be characterised by an exponential
law, similar to X-ray attenuation.

i = efﬁz (5)

Often this is normalised to unit length as o = —10 - log;, (I/Io), where « is the attenuation in Decibels per
unit length. The relationship between o and US frequency is approximately linear over the range from 200 kHz
to 100 MHz.14 15 Attenuation for different types of soft tissue usually varies between 0.6 and 1.2 dB/cm at
1 MHz, with bone ranging up to 20 dB/cm. Typical absorption coefficients for various media are known, so we
estimate absorption coefficients by an interpolation from the values of air, water, and bone, and thus the fraction
of intensity absorbed in tissue along a known distance d can be estimated for every pixel as

1
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where f is the currently used US frequency.
23 T T T T T T
Interpolation Air-MHater
Interpolation Hater-Bone

18 1

16 1

14 | -
]
—]
1]
-]
=] -
1]
1]
=
c
=} 4
c
=]
=
e
-8 N
[
-]
7]
8
=

1 1 1 1
2H 3H 4H SH 6H FH

Acoustic Impedance in Rayls

Figure 4. Mapping from acoustic impedance to ultrasound absorption, separately interpolated between air and water
resp. water and bone, using a quadratic interpolation each.



Also the transducer will be able to detect more reflected intensity, if it is closer to the point of reflection. In
addition to our tissue-dependent absorption we also model via the solid angle the distance-dependent ratio of
energy that escapes the transducer.

G

Figure 5. Screen shot of estimated reflection ratio (left) and estimated absorption ratio (right). For example, bones
provide strong reflections, visible as bright borders in the left image, but also absorb intensity, visible as dark areas in the
right image.

For a screen shot of estimated reflection and absorption ratios cf. figure 5.

3.4. Transmission

To simulate the image, we track US propagation through the tissue, this being is the only step that can not
be done for each pixel separately. Initially, the US instensity at the location of the probe is set. We track the
amount of intensity transmitted along each column of the image, and for every pixel in the column we compute
the amount of intensity that is reflected or absorbed (based on the propagation characteristics explained above).
After that we subtract reflection and absorption from the incident intensity at that pixel and step to the next.
The same attenuation is assumed for the reflected signal on its way back to the transducer.

Finally, the estimations for reflection, transmission and absorption can thus be combined to estimate the
reflected intensity for any depth = along the scanline in the ultrasound image:
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For a screen shot of transmitted and reflected intensity cf. figure 6. The “blending” step is illustrated in
figure 7. Special care has to be taken for the absorption, because it depends on the length of tissue d between the
evaluation points. Equation 7 assumes that the evaluation points on one ray are regularly spaced — this should
be the case in all implementations based on any rectangular (pixel) grid.

In our implementation we use one CUDA thread per column, the currently transmitted intensity is maintained
as one row in shared memory, and all threads are synchronised before and after updating those values, because
in the general case intensity is interpolated from two pixels in the row above.

So far, we’ve synthesised an ultrasound reflection image, and in post-processing steps we add artifacts char-
acteristic for ultrasound images, namely speckle noise and blurring.



.

Figure 6. Screen shot of estimated transmitted intensity (left) and estimated reflected intensity (right).
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Figure 7. Integration of noise, transmission, absorption, and reflection in “blended image”.

3.5. Speckle noise and blurring

A “fully developed speckle pattern”, i.e. pure diffuse scattering with many (i.e. > 10) scatterers per resolution
cell, can be well characterised by a Rayleigh distribution.'®'” The additive component is generally accepted
to be negligible compared to the multiplicative component. And as commonly done in work dealing with the
filtering of speckle noise, our definition above implies that the noise is uncorrelated, i.e. we each pixel is distorted
independently. This allows us to pre-compute the noise in the form of a 3-D “noise volume”. Using a sufficiently
large size, e.g. 128 x 128 x 128 pixels, this texture can be used for the whole image without any noticeable
repetition.

Speckle noise is added in a post-processing step: we use GLSL to extract a 2-D slice from the 3-D Rayleigh
noise texture and CUDA for blending. Radial blurring (in lateral and axial direction) is added using CUDA
again.

3.6. Refraction

Refraction is not taken into account so far. However, the framework can be extended to also model refraction as
soon as hardware support for atomic functions (CUDA compute capability 1.1) will be available on NVIDIA’s
more advanced graphics processors.



3.7. Log-compression

To amplify small values a logarithmic compression is be applied, according to the following function:®

ro(z) =log(l+ a- ) *log(l+ a) (8)

In order to provide a more meaningful parameter value, a is computed from an input value b in Decibels as
a = 10°/1° Usually input values in the range of 50 to 70 dB yield appropriate results. Like with commonly
used US machines the amount of compression is variable for different imaging depths via the so-called “time gain
compensation”.

4. RESULTS

We benchmarked our implementation by simulating an ultrasound image of size 512 x 384 pixels (aspect ratio 3:4)
from a raw CT volume of size 512 x 512 x 148 voxels on a work station equipped with a GeForce 8800 GTX,
Dual Intel Xeon 3 GHz, and 2 GB RAM. For detailed timing information cf. figure 8 and tables 1 and 2.

Note that transfers between CPU and GPU amount to 4.08 ms, because as of CUDA 1.1 transfers between
OpenGL and CUDA use host memory, but in total we met the requirement of usually 30 frames per second for
an interactive simulation.
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Figure 8. Timing overview for all simulation steps (left) and a breakdown of the “Computation” step on GPU (right).

Our ultrasound simulation has been integrated with a haptic input device and force feedback. One possible
application is simulating a transrectal ultrasound examination, as needed for e.g. ultrasound-guided needle
biopsy of the prostate. For a visual comparison of our simulation with a typical image from a real examination
cf. figure 9. As visible in the image, we provide a realistic simulation of US reflection and artifacts like shadows,
attenuation, speckle noise, and radial blurring. A more general abdominal ultrasound examination has also been
implemented.

Figure 9. Screen shot of our ultrasound simulation (left), configured like a transrectal ultrasound probe, with a similar
image from a real transrectal ultrasound examination of a different patient (right, image courtesy of Robarts Research
Institute). For display purposes, both images have been manually and identically brightened.



Slicing 0.300 ms
Transfer OpenGL-host 1.864 ms
Transfer host-CUDA 1.114 ms
Computation on GPU  8.690 ms
Transfer CUDA-host 0.302 ms
Transfer host-OpenGL  0.796 ms
3-D Rendering 0.208 ms

Table 1. Timing information for our ultrasound simulation.

Impedance Estimation 0.067 ms
Gradient Computation 0.617 ms

Propagation 0.152 ms
Synthesis 2.325 ms
Blurring 4.157 ms
Stenciling 0.072 ms
Log-compression 1.060 ms
Data Scaling 0.060 ms

Table 2. Timing information for the image computation on GPU.

5. DISCUSSION

The achievable resolution for commonly used US frequencies is limited by the wavelength A = ¢/f, and for
clinically relevant frequencies on the order of 0.2 mm. The achievable resolution of the US simulation is strongly
dependent on the resolution of the underlying CT data, and thus in order to increase the resolution of the
simulation CT with a higher resolution will be needed.

The generation of US images from a geometric model, which can be a segmentation of CT data, and synthetic
3-D textures, which can be based on real US images, yields convincingly textured organs, as shown by Zhu et
al.> However, this simulation can only be as detailed as the underlying model or segmentation, respectively, so
smaller structures are not included in the simulated, if they have not been segmented.

Also, we spend a significant amount of time for blurring the image, cf. figure 8, so there might be potential
for further optimisation.

6. CONCLUSIONS

We modified an existing physically plausible approach to simulate US images so that computation is entirely
feasible within the virtual US scan plane and with only one slice from the original 3-D CT image. We present
the design of an implementation in CUDA, which provides an acceleration compared to previous CPU-based
approaches. No manual annotation or adjustment of the input data is necessary, and for a simulation of US
images with the same resolution (512 pixels) as commonly used CT images 8.7 ms are needed for the image
computation step on GPU.

Ultrasound reflection, attenuation, shadowing artifacts, speckle noise, and radial blurring are reproduced.
To our knowledge no method of simulating ultrasound absorption from CT data has been published before
beyond “counting bone pixels” as implemented by Zhu et al.® or Vidal et al.” Like a real probe, all acquisition
parameters can be interactively changed during the simulation, including US frequency, US intensity, time-gain
compensation, and field geometry, as well as speckle size and radial blurring. A wide range of different probe types
can be simulated and our simulation framework is generally applicable to training of different US examinations
or US-guided procedures.
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