
Uncertainty Estimation in Vascular Networks

Markus Rempfler1,2, Bjoern Andres3, and Bjoern H. Menze1,2

1 Institute for Advanced Study, Technical University of Munich, Germany
2 Department of Informatics, Technical University of Munich, Germany

3 Bosch Center for Artificial Intelligence (BCAI)

Abstract. Reconstructing vascular networks is a challenging task in
medical image processing as automated methods have to deal with large
variations in vessel shape and image quality. Recent methods have ad-
dressed this problem as constrained maximum a posteriori (MAP) in-
ference in a graphical model, formulated over an overcomplete network
graph. Manual control and adjustments are often desired in practice and
strongly benefit from indicating the uncertainties in the reconstruction or
presenting alternative solutions. In this paper, we examine two different
methods to sample vessel network graphs, a perturbation and a Gibbs
sampler, and thereby estimate marginals. We quantitatively validate the
accuracy of the approximated marginals using true marginals, computed
by enumeration.

1 Introduction

Vessel segmentation and centerline extraction is a longstanding problem in com-
puter vision [1]. From a medical perspective, segmenting and tracking vessels is
crucial for planning and guiding several types of interventions. Several recent
methods, however, have focussed on reconstructing vessel network graphs [2, 3,
4, 5, 6]. Analysing vascular graphs is expected to give insights into various bi-
ological properties, e.g. the relation between vascular remodeling processes and
neurological diseases or pharmaceutical treatments [7]. These methods formulate
the task as MAP inference in a constrained probabilistic model over a (super-
)graph of candidate vasculature, where the solution encodes the subgraph that is
most likely to represent the underlying vasculature. Variations of this approach
include joint-tasks such as anatomical labeling of vasculature [6] or artery-vein
separation [5].

As in many applications, exploring multiple solutions or even marginal dis-
tributions would be preferable over mere point estimates – either to present
local uncertainty to the end user or to pass it over to the next stage of the pro-
cessing pipeline. An automated reconstruction can be inspected and, if needed,
edited by an expert. In such a workflow, the controlling expert benefits from
an indication of the uncertainty in the presented reconstruction (cf. Fig. 1). To
this end, recent work investigated how to find the m-best diverse solutions to
the MAP problem in conditional random fields (CRFs) to explore a variety of
highly probable assignments [8, 9]. This approach, however, increases the compu-
tational complexity of the discrete optimization further. Alternatively, Markov
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Fig. 1. Illustration of the uncertainty quantification in vasculature graphs from a 2D
retinal image (left). Recent methods reconstruct the network from an overcomplete
graph of candidate vessels (second, graph in green) by calculating the MAP state
(third, graph in red) in a probabilistic model. Approximating marginal distributions
(right) enables us to quantify the uncertainty in the network graph, which is valuable
information for manual inspection and correction. Two examples are indicated with
black arrows: In the first, the model is uncertain whether it is a furcation or a crossing,
while in the second, a connection is not contained in the MAP but still has a high
marginal probability.

chain Monte Carlo (MCMC) methods can be used to sample from probabilis-
tic models [10, 11]. While being well established for many statistical inference
tasks, they are often considered expensive and difficult to parametrize for typ-
ical problems in computer vision. Papandreou and Youille [12] presented the
idea to introduce local perturbations and solve for the MAP estimate of the
perturbed model repeatedly to generate samples. They identify a perturbation
distribution which allows to estimate marginal densities of the original Gibbs
distribution while leveraging the computational efficiency of available discrete
solvers. This idea was extended to a broader problem class in [13], while the
theoretical framework was further developed in [14, 15, 16, 17]. A few empiri-
cal studies investigated the effectiveness of such perturbation models in typical
segmentation problems [15, 18, 19].

In this paper, we extend recent graph-based methods for reconstructing vas-
cular networks that rely on integer progamming. We adapt two sampling ap-
proaches for the underlying probabilistic model, a perturbation sampler based
on [12, 14, 15, 13] and a Gibbs sampler based on [10, 20]. They enable estimates
of marginal distributions and a straight-forward way to quantify uncertainty in
properties calculated from the resulting network graphs. To deal with the diffi-
culty of validating the quality of the approximated marginals, we compare the
approximated marginals to the true marginals, calculated by enumeration.

2 Background

Several recent methods for vessel network reconstruction pose the problem as
MAP inference in a (constrained) probabilistic model over a supergraph com-
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posed of candidate vessels [2, 3, 4, 5, 6]. In short, such a candidate supergraph
is typically constructed by detecting points that are likely to lie on a vessel cen-
terline, composing the nodes v ∈ V of the graph, and then inserting an edge
e ∈ E for each path that connects two nodes in close proximity. The MAP state
then encodes a subgraph and thereby represents which parts of the candidate
supergraph are present in the reconstruction. Calculating this MAP state can be
formulated as an integer linear program (ILP) and solved by a branch-and-cut
procedure. In the remainder of this section, we first describe such probabilistic
model for vessel graphs and its MAP estimator. Details on the particular choice
of candidate graph construction used in this study can be found in Sec. 4.

Probabilistic Model. Given a (directed) candidate graph G = (V,E), we
define a measure of probability P (X = x|Ω, I,Θ) over possible vessel networks
within G, encoded by x ∈ {0, 1}E . These indicator variables then encode whether
an edge e is present in the solution (xe = 1) or not (xe = 0). We denote the set
of feasible solutions as Ω, the image evidence as I and the model parameters as
Θ. The measure of probability can be defined as:

P (x|Ω, I,Θ) ∝ P (Ω|x)
∏
ij∈E

P (xij |I,Θ)
∏

C∈C(G)

P (xC |Θ) , (1)

where P (Ω|x) ∝
{

1 if x ∈ Ω,
0 otherwise

. (2)

We identify three parts: First, P (Ω|x) is the uniform prior over all feasible
solutions. Second, P (xe|I,Θ) is the local evidence for an edge, i.e. the unaries.
Third, P (xC |Θ) corresponds to joint-events C that form higher-level potentials,
and C(G) denotes the set of all events at any possible location within G. xC = 1
indicates that the particular event C occurred.

In [2, 3, 4, 5, 6], these different parts have been chosen depending on the par-
ticular image datasets and target application of the reconstructed vasculature.
For this study, we will impose the following constraints: each node can have at
most one incoming edge and at most two outgoing edges. Furthermore, we do
not allow the solution to contain circles. These three types of constraints define
our Ω. As higher-level events xC , we consider appearance, termination and bi-
furcation in each node, leaving us with at most 3|V | possible events in C(G).
These events can be represented with binary indicator variables xC and a set
of 3|V | auxiliary constraints that tie their state to the original edge variables
x upon which they depend. Note that the number of involved edge variables
of a particular type of event varies with its location within G: For example, a
bifurcation event at node v involves all xe of potential outgoing edges e ∈ δ−(v).
We denote the set of auxiliary constraints necessary for higher-level events as
ΩA in the remainder of this section. The description of both Ω and ΩA in terms
of linear inequalities can be found in the supplement.
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MAP Estimator. Using the bilinear representation of the pseudo-boolean
probability functions P (xij |I,Θ) and P (xC |Θ), we can formulate the MAP
estimator to (1) as ILP:

minimize
∑

(i,j)∈E

wijxij +
∑

C∈C(G)

wCxC (3)

s.t. x ∈ Ω, [x,xC ] ∈ ΩA, x ∈ {0, 1} , (4)

where wij = − log
P (xij=1|I,Θ)

1−P (xij=1|I,Θ) and wC = − log P (xC=1|Θ)
1−P (xC=1|Θ) . The constraint

x ∈ Ω is due to P (Ω|x) and [x,xC ] ∈ ΩA ties auxiliary variables for the events
to the edge variables x. Finally, all variables are binary. This ILP can be opti-
mized with the branch-and-cut algorithm. Certain types of constraints contained
in Ω may consist of an extensive number of inequalities (e.g. the cycle-free con-
straint). In this case, we employ a lazy constraint generation strategy: Whenever
the solver arrives at an integral solution x′, we check for violated constraints in
the corresponding solution, add them if required and reject x′. If no violation
is found, i.e. x′ is already a feasible solution, then it is accepted as new current
solution x∗. For our set of constraints Ω, we use this scheme for the cycle con-
straints, where we identify strongly connected components efficiently with [21]
and add the violated constraints for the cycles within them. All other constraints
for incoming and outgoing edges, as well as auxiliaries can be added to the op-
timization model from the start.

3 Uncertainty Estimation by Means of Sampling

3.1 Perturbation Sampler

Following the work of [12, 14, 15], a perturbation model is induced by perturbing
the energy function of a random field and solving for its (perturbed) MAP state:

P (x̂|I,Θ) = Pγ
(
x̂ ∈ arg min

x∈Ω
E(x; I,Θ) + γ(x)

)
, (5)

where E(x, I,Θ) is the energy function of the random field and γ (x) is the
perturbation. It was shown that if the full potential table is perturbed with IID
Gumbel-distributed samples of zero mean, then the perturbation model and the
Gibbs model coincide [12]. In practice, this is not feasible. The full potential table
may be too large and it destroys local Markov structure, rendering optimization
difficult. However, it was shown in several studies that even first order Gumbel
perturbations yield sufficiently good approximations [12, 15]. In this case, only
the unary potentials are perturbed and hence, the perturbation γ (x) becomes:

γ (x) =

N∑
i=1

∑
l∈L

γli1(xi = l) , (6)

with γki being IID samples from the Gumbel distribution [22] with zero mean and

variance π2

6 , and 1(.) is the indicator function. Sampling from the perturbation
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model then boils down to drawing a new perturbation γ (x) and determining
the new MAP state. Having a procedure to sample efficiently from the model
enables us to estimate marginal distributions of variables (and variable subsets)
as well as derived measures of uncertainty. We refer the interested reader to [12,
13, 14, 15, 16] for further information on perturbation models.

We next derive the first-order perturbed objective for the MAP estimator
in (3). First, we note that two states will need two independent gumbel samples
γ1ij , γ

0
ij according to (6). Our MAP estimator, however, uses only one binary

variable to encode both states. We use again the bilinear representation of the
pseudo-boolean functions to find that perturbing the unaries adds a difference
of the two independent gumbel samples, i.e. ∆γij = (γ1ij − γ0ij), to the original
weight wij . The first-order perturbed objective of (3) is thus:∑

(i,j)∈E

(wij +∆γij)xij +
∑

C∈C(G)

wCxC . (7)

Drawing a sample from our probabilistic model therefore boils down to con-
structing a new perturbed objective (with a new set of ∆γij) and optimizing the
according ILP with the original constraints (4) and (7) instead of (3). This can
be implemented by changing the coefficients of the optimization problem for each
new perturbation. We note that we can warm-start the optimization with the
previous solution and that we can keep previously generated constraints since
they are not depending on the weights but only on the structure of G and thus,
remain valid.

3.2 Gibbs Sampler

As alternative to the perturbation sampling, we employ a Gibbs sampler [10], a
method of the MCMC family. We apply the following two modifications described
in [20] to obtain a metropolized variant of the Gibbs sampler, which is expected
to be more efficient for discrete problems. 1) variables are sampled in random-
scan fashion within each sweep, and 2) the acceptance probability is replaced
with the Metropolis-Hastings acceptance probability

α = min

(
1,

1− π(xe|x\e)
1− π(x′e|x\e)

)
, (8)

where π(xe|x\e) and π(x′e|x\e) are the conditional probabilities of current and
proposed state. To cope with the extra constraints of Ω, we can employ the
same procedures to identify violated constraints as within the branch-and-cut
algorithm. In this case, however, it suffices to check only those constraints which
involve the changed variable(s). Changes that render the state infeasible with
respect to Ω have a zero probability and will thus always be rejected. Auxiliary
variables xC for higher-level events need not to be sampled but can be determined
directly from the current state x using the relationship encoded by the auxiliary
constraints ΩA. After a burn-in period of 1000 sweeps, we run one sweep for
each sample.
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4 Experiments & Results

We conduct our experiments on retinal images [23]. In the first part of this sec-
tion, we detail on the preprocessing, i.e. the candidate vessel graph construction.
In the second part, we then present both quantitative and qualitative results of
the two sampling approaches. We address the difficulty of validating marginal
distribution estimates by computing exact marginals on smaller problem in-
stances, where brute-force enumeration of all states is computationally possible.

Candidate Graph Construction. As a first step, we need to propose vascu-
lature in terms of an overcomplete candidate graph G = (V,E). We rely on the
following scheme to achieve this, which is mainly based on [2, 3, 24]:

1. Centerline detection. We compute a centerline score fcl(I) for the entire im-
age using a regression approach based on [24]. High centerline scores indicate
the presence of the centerline of the vessel.

2. Candidate node selection. We construct a collection of candidate nodes V
by iteratively selecting the locations with the highest value in the centerline
measure map and suppressing its neighbourhood within a radius rsup until
no more locations with a value larger than θT are left.

3. Connection of candidates. Next, we reconnect previously selected candidate
nodes to its N closest neighbours using Dijkstra’s algorithm on the centerline
score map. A connection between two nodes i, j ∈ V then forms an edge
(i, j) ∈ E in the vessel candidate graph. Connections that pass through
a third candidate node are discarded as they would introduce unnecessary
redundance. To save computation time, we limit the maximum search radius
to rs.

In these experiments, we set rsup = 5 px and θT = 0.3 max fcl(I) for the candi-
date selection, and N = 4 and rs = 30 px for the edge construction. We use a
discriminative path classifier to estimate P (xij = 1|I), i.e. how likely edge ij ∈ E
belongs to the graph or not, which is then used to calculate the weights wij . To
this end, we use gradient boosted decision trees with 5 features calculated along
the path: length, tortuosity, cumulative fcl, min fcl and standard deviation of
fcl. Additional details on both centerline regressor and path classifier can be
found in the supplement. For each class of events, appearance, termination and
bifurcation, we introduce one parameter θa, θt and θb as constant weight for the
respective event happening at a given node, and set them to θa = 0.5, θt = 0.1
and θb = 0.1.

Comparison. In order to quantitatively validate the marginals that we ap-
proximate by using the perturbation sampler, we set up a series of 15 small test
graphs with |E| ≤ 20 from the test images of [23], such that we are able to
enumerate all feasible states and thereby obtain exact marginals by brute force.
We then compare these exact marginals to the approximate marginals obtained
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Fig. 2. Comparison of the approximated marginals Q(xi) with the exact marginals
P (xi) calculated by brute force enumeration of all states. Approximates are obtained
from the perturbation sampler (blue), from the Gibbs sampler (red), and from the
raw classifier probability (orange). The figure shows deviation P (xi) − Q(xi) (top
row) and absolute deviation |P (xi)−Q(xi)| (bottom row) of the marginal estimate
with increasing number of samples n. Boxplots denote the median with a black bar, the
mean value with a black dot and outliers with a grey cross. Right column: Scatter
plot of exact marginal probabilities P (xi) versus approximated marginal probabilities
Q(xi). We observe that the perturbation sampler converges to an absolute bias of
about 0.032 on average and has the tendency to overestimate the marginal probabilites
slightly. The Gibbs sampler does not exhibit such a systematic bias, but needs more
samples to reduce its variance. Using the probabilistic output of the local classifier
as an approximate to the marginals is considerably less accurate than both sampling
approaches.

by both perturbation and Gibbs sampler. We solve the ILP of our MAP estima-
tor by the branch-and-cut algorithm of [25] and implement the lazy constraint
generation as callback. We use the default relative optimality gap of 10−4.

In Fig. 2, we compare the approximated marginals from our perturbation
sampler with exact marginals. We sample 10000 samples per case in total and
repeat the experiment 5 times. We observe that the absolute deviation of the
approximated from the exact marginals converges already at about 1000 samples
to an absolute error of |P (xi)−Q(xi)| ≈ 0.032 on average and the perturbation
sampler shows a tendency to overestimate the marginal probabilities. Such a
systematic bias is to be expected, as we apply a low-order perturbation instead
of the (intractable) full perturbation. The Gibbs sampler does not exhibit such
systematic bias, yet shows a larger variance when fewer samples are aquired.
With 10000 samples, its mean absolute approximation error is 0.012 and there-
fore better than the perturbation sampler. Wilcoxon signed-rank tests for each
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Fig. 3. Visualisation of the vascular network graphs overlaid on the (grey-scale) input
image. From left to right: Pixel-based centerline obtained by skeletonizing the ground
truth segmentation, MAP reconstruction, approximated marginals using the perturba-
tion sampler, and the Gibbs sampler. The colorbar applies only to the marginals of two
right columns, where we show the marginal P (xij = 1∨xji = 1), i.e. the probability of
either edge being active, for better visibility. We find that the marginals of the pertur-
bation sampler indicate uncertainty in small bifurcations and point out the (possible)
presence of weak terminal branches, which would be discarded if we only consider the
MAP solution. The Gibbs sampler displays overall a higher uncertainty on such large
graphs.

fixed number of samples n indicate that the approximation errors of perturba-
tion and Gibbs sampler are significantly different (p < 0.001), with the exception
of n = 1000 where both show similar errors. Using the probabilities of the path
classifier directly as an approximate marginal is considerably worse than both
sampling approaches. Note that the exact marginals for our test cases do not
exhibit very high values (cf. Fig. 2, right column) due to the fact that for these
small graphs, often no direction is strongly dominating and thus, several solutions
that contain similar physical paths but in different orientations are competing.

A qualitative visualisation of the approximated marginals on complete graphs
is given in Fig. 3. We draw 100 perturbation samples, which we found a reason-
able trade-off between computation time and informativeness of the marginals,
and slightly increase the relative optimality gap to 5·10−3 to prevent the branch-
and-cut solver from spending too much time proofing optimality. From the Gibbs
sampler, we draw 10000 samples after a burn-in period of 1000. We find that
the marginals from the Gibbs sampler display overall a higher uncertainty in
the graph than the perturbation samples, which could be due to more difficult
transitions between different modi of the distribution and would likely require
adapted sampling parametrization or even an extension of the set of allowed
transformations. In both cases, thresholding the marginal distributions P (xe)
has no guarantee to satisfy all constraints and is therefore not recommended for
obtaining a single reconstruction. To improve a reconstruction, an interactive
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procedure using the uncertainties (and individual samples) would be advisable,
and for downstream analysis, metrics of interest should be calculated on each
sample. Regarding computation time, the average runtime per sample is 7.85 s for
the perturbation and approximately 0.01 s for the Gibbs sampler (not including
any additional overhead caused by the burn in period). The perturbation sam-
pler spends on average 0.5 % of its runtime in the lazy constraint generation
where violated cycle inequalities are identified.

5 Conclusion

We adapted two sampling approaches for vascular network graph reconstruc-
tion models, a perturbation sampler and a Gibbs sampler. Our experiments
confirm the expected systematic bias of the perturbation sampler due to the
computationally cheaper low-order perturbations. The Gibbs sampler, on the
other hand, exhibits an unbiased behaviour but instances with varying proper-
ties might require an appropriately adapted parametrization. The perturbation
approach benefits from not having a burn in period, which renders it consider-
ably easier to use on large instances. Both approaches were shown to be more
informative than the predictive probabilities of local classifier and can be used
to approximate marginals or determine the uncertainty in network graph prop-
erties. Beyond this, the two sampling procedures could be employed within a
Bayesian model selection framework or for maximum-likelihood hyperparameter
estimation.
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