Sensor Substitution for Video-based Action Recognition

Christian Rupprecht+,1,2, Colin Lea+,2
Federico Tombari1,3, Nassir Navab1,2, Gregory D. Hager2

Abstract—There are many applications where domain-specific sensing, for example accelerometers, kinematics, or force sensing, provide unique and important information for control or for analysis of motion. However, it is not always the case that these sensors can be deployed or accessed beyond laboratory environments. For example, it is possible to instrument humans or robots to measure motion in the laboratory in ways that it is not possible to replicate in the wild. An alternative, which we explore in this paper, is to use situations where sensing is available to train a substitute algorithm operating from available sensor data such as video. We present two examples of this sensory substitution methodology. The first variation trains a convolutional neural network to regress a real-valued signal – robot end-effector pose – from video. The second example regresses binary signals detecting when specific objects are in motion. We evaluate these on the JIGSAWS dataset for robotic surgery training assessment and the 50 Salads dataset for modeling complex structured cooking tasks. We evaluate the trained models for video-based action recognition and show that the trained models provide information that is comparable to the sensory signals they replace.

I. INTRODUCTION

Domain-specific sensors are often critically important in robotics applications. For example, pressure sensors are important for manipulation tasks, tool tracking supports visual servoing, and accelerometers support SLAM approaches. However, there are many applications where the ideal sensing is too impractical or too costly to deploy in real-world settings. For instance, in the next-generation kitchen[1] it might be beneficial to attach motion sensors to all tools to support monitoring or control, but retrofitting every kitchen at scale is simply impractical due to a combination of cost, data acquisition and synchronization overhead, and physical constraints in instrumentation. A practical alternative would be to mount a video camera to observe the scene, but current methods for video tracking and action recognition generally achieve worse performance than their counterparts using domain-specific sensing [1], [2].

In this paper, we introduce a methodology and associated models capable of replicating domain-specific sensing from video footage. We use state-of-the-art machine learning techniques to regress a mapping from a video frame to the corresponding sensor measurements in a supervised setting, thus enabling augmentation of videos with virtual sensor data whenever real sensors are not available. Empirically we find that this maintains or even improves performance on tasks like action recognition. In this work, we demonstrate such ability within the domains of robotic surgery and cooking.

In the first domain, we regress position measurements by learning a continuous model for the 3D position of two robot end effectors from a da Vinci surgical robot. We evaluate on the JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) [3]. Similar approaches could be applied to other continuous signals from a mobile robot, a robotic arm, or motion capture.

For applications in structured activities, like for a cooking assistant, we learn a discrete model to identify when specific objects in a scene are in motion. This is evaluated using the University of Dundee 50 Salads dataset [4] where signals are derived from an accelerometer attached to each cooking utensil. We define each object as in motion or not in motion. Given that there are ten objects in the scene, this task is much more complex than the surgical case.

To demonstrate the value of this approach, we use our virtual sensor-data to improve segmentation and classification of
fine-grained actions. More specifically, we extend the model of Lea et al. [5], which solely uses sensor data, to enable video-based recognition on these tasks. They introduce a type of action primitive that captures how sensors change throughout the course of an action. The model, a Latent Convolutional Skip Chain CRF (LC-SC-CRF) captures actions, transitions between actions, and temporal priors. We modify their sensor-based action primitives to incorporate video data by means of a learning approach based on a Convolutional Neural Network (CNN).

On JIGSAWS our recognition results are as good as the kinematics we learn on and are superior to the state of the art video-based results. In addition, we perform experiments to measure how well these models transfer from one task to another. For example, we train a CNN using data from a Suturing task and evaluate on a Needle Passing task. On 50 Salads our method shows promising results qualitatively for predicting motion cues, but, due to the extreme complexity, does not achieve the same success.

Finally, we also employ two recent techniques for CNN feature visualization to highlight the internal activations of our model in presence of certain actions, which proves to be particularly useful in order to determine how well the learning of the virtual sensor data is driven by the presence of specific tools or poses in the input image.

To summarize, our contributions are:

1) We develop a CNN architecture that predicts continuous and discrete sensor signals from video frames for use in an action recognition model.

2) We show that predicting sensor-data improves video-based action recognition performance on two datasets. Furthermore, we show that CNN models trained on one task generalize to other tasks.

3) We highlight the capabilities of the CNN using two visualization techniques.

II. BACKGROUND AND RELATED WORK

First we motivate the importance of our application domains and then describe recent work on video analysis.

Surgical Analysis: In recent years, hospitals have collected a deluge of data from surgical training and live procedures. There have been several calls for improving surgical education through quantitative analysis [6], [7]. New methods for automated analysis of both live surgery and training tasks could improve both automatic surgical workflow understanding and educational practice through computer-assisted training.

While there has been much work on automated assessment, a large body of it has been devoted to robotic surgery using systems like the da Vinci robot. While useful for robotic applications, it ignores the large swaths of data comprised solely of video sequences like from traditional laparoscopy. One goal of this work is to extend these robotic methods to non-robotic settings.

Previous work on activity recognition for surgical robot training evaluation has primarily relied on using the kinematics of the surgical tools to segment and classify each step in a training exercise. Early work on the JIGSAWS dataset by Lin et al. [8] extracts local time series signals and applies Linear Discriminant Analysis to classify motions. Varadarajan [9] used variations on Hidden Markov Models (HMMs) and Linear Dynamical Systems (LDSs) in his thesis to model a high dimensional feature vector including tool positions, velocities, joint rotations, gripper states, and other robot configurations states. Complementary research uses the video data from each trial [10], [1]. In [1] Tao et al. use a bag-of-features approach with video using spatio-temporal interest points (STIPs) but achieve worse accuracy than kinematics-based approaches. Other related works include daVinci tool tracking [11] and skills assessment [12], [13].

Cooking tasks: There have been several recent works focused on the cooking domain [14], [15], [16]. Here, we use the 50 Salads dataset of Stein and McKenna [16]. Vision-based work for cooking tasks has focused on leveraging human pose. For example [17] and [18] use the predicted body configuration to predict a sequence of actions. Other object-centric methods (e.g. [19], [20]) localize objects in each image and use their identities and relationships to predict actions. A downside to object-centric approaches is that they require knowing the specific set of objects being used. For example, if the system was only trained on green apples then it would not be able to correctly recognize red apples. In contrast, our sensor-based methods are applicable regardless of which specific object is in use because we focus on generic tools.

Video Analysis: Deep learning, specifically using CNNs, has become an important machine learning tool in recent years. In the computer vision literature, deep learning has been applied to many regression tasks. In human pose estimation [21], [22], [23] the 2D or 3D position of the body’s joints are regressed from a cropped image around the person. Facial landmark detection methods like [24] regress the location of certain keypoints across faces. In text recognition [25] Jaderberg et al. refine box locations using regression before the patch is classified as a word. Estimating the end-effector positions of a robot is related to these tasks in the sense that the model should jointly learn the spatial and textual relationships between an image and sensor data.

There have been numerous papers from both the computer vision and robotics communities modeling actions. In computer vision, most papers focus on action classification. Many of these methods rely on bag-of-words models using spatiotemporal features like Improved Dense Trajectories (IDT) [26]. CNN-based methods are becoming more common but are often used in conjunction with IDTs [27]. Zisserman et al. [28] developed a CNN architecture using color and optical flow learns patterns similar to IDT. Additional recent work combines CNNs with Recurrent Neural Networks (RNNs) for video analysis. Wu et al. [29] propose an RNN with Long Short Term Memory (LSTM) for action classification using video and optical flow.
In this section we introduce our approach, which consists of predicting sensor values from visual data by means of a CNN with the goal of aiding action recognition. We incorporate our video-based predictions into an extended version of the recent Latent Convolutional Skip Chain Conditional Random Field (LC-SC-CRF) [5] for action recognition.

First we define the mathematical framework which is composed of video-based action-primitives, pairwise action transitions, and temporal priors. Then we introduce the CNN architecture for learning sensor signals from video and further detail our model. Finally, we introduce the CNN feature visualization approach that we use to determine which visual activations drive the learning procedure in our network. The CNN image model is shown in Figure 2 and the temporal model is shown in Figure 3.

A. Notation and Framework

Let S_t be a vector of sensor values (e.g. is each object in motion) and Y_t be an action label (e.g. cutting, peeling) at time t from 1 to T. The conditional distribution of all labels $Y = \{Y_t\}$ given the signals $S = \{S_t\}$ is modeled using a Latent CRF with energy

$$E(S, Y) = \max_h \sum_{t=1}^T \phi(S, Y, h, t) + \psi(Y, h, t) + \pi(Y, h, t)$$

(1)

This energy is comprised of latent action primitives (ϕ), pairwise action transitions (ψ), and temporal priors (π). Variable h denotes the set of latent variables for each time step. Note that during the training phase we do not have access to the true signals S and thus we substitute the predicted signals \hat{S}.

B. Predicting Sensor Values from Video

We formulate the problem of predicting sensor values from video as a regression problem. Given image I_t, we learn a function f such that $f : I \to S$. Let I be defined over the lattice $\Omega = \{1, \ldots, h\} \times \{1, \ldots, w\}$, where w and h denote the image width and height respectively. Hence, for an RGB frame the input is represented by an array of size $h \times w \times 3$.

We learn the mapping f using a CNN architecture specialized for regressing sensor data. The architecture, as seen in Figure 2, is adapted from [21]. We use four convolutional layers which hierarchically model the contents of an image locally. They are followed by three fully connected layers which capture the global relationships. We differ from [21] in that we remove the normalization layers and adapt the image and convolution sizes. Experimentally we found that this performs better for our tasks.

Note that in contrast to many object-recognition models, such as those trained on ImageNet, we use far fewer filters and latent states. Those models are predicting 1000 object classes whereas we predict up to 10 sensor values.

We apply a linear transformation to the ground truth signals to convert them from metric units to the unit cube: the signals S are translated and scaled linearly by applying diagonal scaling matrix Γ and translation \mathcal{T} such that $\Gamma S - \mathcal{T} \in [0, 1]^n$. Γ and \mathcal{T} are computed on the training set. At test-time Γ^{-1} and \mathcal{T}^{-1} are used to rescale the prediction back into the original ranges. These normalization steps make the hyper-parameters (e.g. learning rate, momentum) more robust across different tasks and datasets. Furthermore, normalization helps weigh the relative importance of each individual sensor signal.

Many other papers find that normalizing the images by subtracting the mean image from the training set, $\mathcal{I} = \frac{1}{h} \sum_{i=1}^h I_i$, and scaling to unit variance improves convergence. However, we found that this normalization did not improve convergence, thus we omit this step.

Furthermore, in contrast to the findings of [21], we found that using an L2 training objective performs better than Tukey’s biweight loss. That work claims the biweight loss is better because it is less susceptible to outliers in the hand-labeled training data. In our case, we regress real sensor measurements which are much more accurate. In fact, we found that including all samples is important for predicting extremal sensor values.

C. Latent Action Primitives

We use the latent convolutional action primitives from Lea et al. [5] to model how sensor signals change over time. Complex actions, like moving cucumber slices from the cutting board to a salad bowl, require modeling the state changes involved in picking up the cutting board, moving it, and scraping the slices into the bowl. These action primitives are modeled such that they model how the sensors change throughout an action.
We define a set of H action primitives per action, where H is the number of latent states per class y. Each primitive, w^h_y is of size $F \times d$, where F is the number of sensors and d is the length of a primitive. These primitives are convolved with the sensor data S from time $t - d$ to t to get score

$$
\phi(S, Y, h, t) = w^h_y \ast S_{t: t+d}.
$$

(2)

Recall from the energy model that we maximize over all latent states, thus, ϕ will be the score corresponding to the best action primitive.

D. Action Transitions

The pairwise term models transitions between latent action primitives. Each action primitive is of length d, so we model the transition from times t to $t-d$. This term is a generalization of the Markov pairwise term commonly used in Hidden Markov Models and Linear Chain CRFs. This skip-term has shown empirically to perform substantially better than traditional Markov terms [30]. This term is modeled as

$$
\psi(Y, h, t) = \alpha_{h_{t-d}, h_t},
$$

(3)

where h_t corresponds to the latent state at time t.

E. Temporal Priors

We model the likelihood of each class for each time step using a temporal prior. This is a generalization of the temporal prior used in the original LC-SC-CRF.

We define weight matrix β of size $C \times T'$, where C is the number of action classes and T' is the canonical number of time steps. Thus, each element measures the likelihood of each class occurring at each time. This prior is given by

$$
\pi_k(Y, h, t) = \beta_{Y(t'), h_t},
$$

(4)

where t' is relative time $t' = T' \ast \frac{t}{T}$ and T is the number of timesteps in that instance. Given the limited amount of training data we set $T' = 30$ to prevent overfitting.

F. Learning

We learn parameters w, α, and β using a Structural Support Vector Machine [31]. This function minimizes the upper bound on the empirical risk. We define the SSVM loss function Δ as the Hamming distance between ground truth labeling Y^\ast and an arbitrary labeling Y:

$$
\Delta(Y^\ast, Y) = \sum_{t=1}^{T} \delta(Y^\ast(t) \neq Y(t))
$$

(5)

where δ is the Dirac delta function. We minimize this objective by applying Stochastic Gradient Descent with Adagrad [32] step updates.

For practical reasons train the CNN independently of the LC-SC-CRF, however, in principle they could be trained jointly using the SSVM. The LC-SC-CRF is trained using predictions \tilde{S} as input.

Inference for our model is performed using the variation of the Viterbi decoding algorithm for skip-chains. For more details see [5] or [30].

G. Visualization

For qualitative evaluation we visualize our CNN using two recent techniques proposed by Bolei et al. [33] and Jost et al. [34]. The first is applied to the 3D positions from JIGSAWS and the latter is applied to tool usage in 50 Salads.

Method 1: For continuous data we adapted the method by Bolei et al. [33] and Zeiler et al. [35] to understand which part of the image is important for the a given prediction. The method uses the following concept: given an input image I and its prediction \tilde{S} we generate many variants \tilde{I}_k of I where systematically a small patch of the image is occluded. Then for all \tilde{I}_k we measure the change in prediction

$$
C_k = ||f(\tilde{I}_k) - f(I)|| = ||\tilde{S}_k - \tilde{S}||.
$$

(6)

where C_k measures the importance of the occluded patch. If the occlusion creates a large change in prediction the network deemed the original information at this location as significant. C_k can be arranged in a heatmap based on the location of the occluder.

Bolei et al. generated random occluder patches to differentiate the dominant object from background. In our tasks the camera is static, so we compute background patches deterministically based on the median image from that video. Thus, for each location, we overlay a patch of the median pixels in that region. Replacing the patch with background produces a better indicator for its importance than replacing it with random noise.

Method 2: For discrete sensors adapt the method of Jost et al. [34]. Given an input image I the activation for the most confident tool is backpropagated through the network. For visual clarity, the backpropagated values through the ReLU units are only non-zero if the activation and the gradient are positive. We threshold the resulting heatmap at 50% of the maximum value to obtain focused points of attention.
TABLE I: Kinematics predictions RMSE in cm Inter-task are obtained by 8-fold cross validation over the set of users and repeated for the three tasks individually.

<table>
<thead>
<tr>
<th></th>
<th>train</th>
<th>test</th>
<th>left x</th>
<th>left y</th>
<th>left z</th>
<th>right x</th>
<th>right y</th>
<th>right z</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU</td>
<td>SU</td>
<td>0.43</td>
<td>0.33</td>
<td>0.54</td>
<td>0.85</td>
<td>0.88</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>KT</td>
<td>SU</td>
<td>0.62</td>
<td>0.78</td>
<td>0.86</td>
<td>1.37</td>
<td>1.12</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>SU</td>
<td>1.00</td>
<td>1.28</td>
<td>1.30</td>
<td>2.64</td>
<td>2.13</td>
<td>1.76</td>
<td></td>
</tr>
<tr>
<td>SU</td>
<td>KT</td>
<td>0.74</td>
<td>0.74</td>
<td>1.34</td>
<td>1.13</td>
<td>1.00</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>KT</td>
<td>KT</td>
<td>0.44</td>
<td>0.39</td>
<td>0.59</td>
<td>0.52</td>
<td>0.34</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>KT</td>
<td>0.87</td>
<td>1.25</td>
<td>1.22</td>
<td>1.21</td>
<td>1.21</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>SU</td>
<td>NP</td>
<td>1.98</td>
<td>0.95</td>
<td>1.22</td>
<td>2.10</td>
<td>0.87</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>KT</td>
<td>NP</td>
<td>2.06</td>
<td>1.18</td>
<td>1.28</td>
<td>2.04</td>
<td>0.77</td>
<td>2.12</td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>NP</td>
<td>0.80</td>
<td>0.50</td>
<td>0.95</td>
<td>0.90</td>
<td>0.65</td>
<td>0.92</td>
<td></td>
</tr>
</tbody>
</table>

H. Practical Details

We use input images of size 120x75 pixels using the RGB color space to train the CNN. The output is fitted into the [0, 1]^3 interval for training and translated and scaled back to the original range after the predictions are obtained during testing. We train the network with a batch size of 64 samples for 30 epochs using a learning rate of 0.01, a momentum of 0.9 and dropout 0.5. Initialization of all layers is done by randomly sampling from a zero-mean Gaussian distribution with variance of 10^{-2}. The CNN training is carried out using an i7 CPU with 64GB RAM and a single GEFORCE GTX 980 graphics card using the MatConvNet [36] library. Training a single fold of cross validation on JIGSAWS takes about one hour which is relatively quick compared to other deep learning methods. Each fold for the LC-SC-CRF takes around a minute.

IV. Evaluation

In this section we evaluate the benefits of augmenting videos from two substantially different datasets with virtual sensor information. We show the accuracy of the predicted sensor values and the performance in action recognition using such virtual sensor data.

A. JIGSAWS Dataset

The JIGSAWS [3] dataset consists of three tasks, Suturing (SU), Needle Passing (NP) and Knot Tying (KT), which are typically used for skills assessment on the da Vinci surgical system. For each task, eight users performed five trials resulting in about 40 sequences. The videos are accompanied with kinematics recorded from the robot in the camera coordinate frame. Our goal is to predict the 3D coordinates of the left and right gripper resulting in a six dimensional output for our network. Although the annotations in the dataset also supply the velocity of each gripper we found that predicting velocities from a single frame of video performs poorly since no temporal information is passed to the network. For applications that require velocity a simple temporal finite difference can be performed on the predicted positions.

Each task consists of approximately 10 action classes such as reach for needle, insert needle, and loosen suture. Each trial contains around 30 action instances and varies depending on the user and skill level.

All experiments are done using 8-fold cross validation where the model is trained on the sequences of 7 users and tested on the sequences of the left out user. All reported results are averaged over all eight folds.

For each JIGSAWS experiment we provide two experimental setups. First, we train and test our CNN using the appropriate task (e.g. Suturing, Needle Passing, or Knot Tying). Second, we train on each one of the tasks and test on the other two tasks. For example, we train on suturing and test on knot tying. These results show the ability of our model to generalize across tasks.

Kinematics Prediction: Table I shows the RMS error in centimeters for all combinations of training and testing sets. Figure 4 shows the predicted positions and ground truth plots of the x, y and z position of the right and left gripper (in meters). The network was trained and tested on the Suturing task.

Fig. 4: The six plots show ground truth (blue) and prediction (orange) of x, y and z position of the right and left gripper (in meters). The network was trained and tested on the Suturing task.

When performing cross-task experiments we observe a transformation in the coordinate system that the CNN cannot predict. Within each task the relative location of the grippers and objects is relatively constant. For example, for suturing the grippers typically stay near the insertion points. However, between tasks the relative geometry tends to change. Qualitatively, Figure 5 shows that there is a rigid offset and scaling between the predicted locations and ground truth. The demonstrated example is Knot Tying but similar observations have been made in other cross-task experiments as well. Note that the relative motion is predicted accurately and globally consistent, which is much more crucial for action recognition than the absolute values.

Action Recognition: For activity recognition, we use the predicted gripper positions as input into our LC-SC-CRF. For evaluation we define accuracy as the frame-wise accuracy between the ground truth and predicted labels.

Table II shows action recognition results of our model.
trained and tested on all nine combination of the three tasks. Results using the ground truth (GT) kinematics instead of the predicted ones as input into the LC-SC-CRF are also reported. For a video-based comparison, we show the results of Tao et al. [37]. They follow a Bag of Words (BoW) approach with space-time interest points (STIPs) from each image. In their approach, each sequence is modeled temporally with a Markov Semi-Markov Model, where each segment is simply the sum of BoW features over time.

On all three tasks we outperform [37]. On Suturing and Knot Tying we perform notably better and for Needle Passing we achieve comparable results. Needle Passing is visually very different from the other two tasks which makes it more challenging to learn the appropriate information. This also explains why training on Needle Passing gives slightly higher error in Table I than when training on the other tasks.

Furthermore, we observe an interesting fact. For SU and KT we achieve a higher accuracy using the predicted kinematics than using the ground truth signals from the robot. To explain this, we observe that the inter-task shifts in the kinematics coordinate system also manifest (less significantly) in between the different users within a task. We believe that since the CNN cannot learn this transformation the prediction of the kinematics from the CNN averages the biases between users and thus creates a more coherent set of sensor values to train and test on. The 50 Salads dataset [4] consists of 25 people each preparing salads in two trials. The scene is observed by an RGBD camera of which we use the color images. The ten tools used to prepare the meals are equipped with accelerometers employed to measure forces that move the tools. The tools are pepper dispenser, bowl, oil bottle, large spoon, dressing glass, knife, peeler, small spoon, plate and chopping board. It is unreasonable to except that the raw acceleration could be learned from video due to issues like rotational symmetry. The same movement can manifest itself in different ways visually depending on how the tool is rotated. Thus, we threshold the temporal gradient magnitude to detect whether a tool is currently in use.

50 Salads consists of several action granularities. We evaluate on the “eval” granularity which is composed of ten actions that can reasonably be recognized from tool usage: add dressing, add oil, add pepper, cut, mix dressing, mix ingredients, peel, place, serve salad onto plate, and background. Each trial is five to ten minutes in length and is composed of around 25 action instances.

CNN Visualization: Here we show the visualization adapted from Bolei et al. [33]. Figure 5 depicts the heatmap for the input image (middle) once by computing C_k of the subset of S that corresponds to the left gripper’s 3D location (left heatmap) and once for the right gripper’s (right heatmap). The left image clearly highlights the left gripper, implying that the position is a function of the image content in that region. Interestingly, the right image highlights both grippers, implying that the right position is a function of both gripper regions.

Action Recognition: The action recognition results using the predicted tool usage are summarized in Table II. Predicting tool usage for ten objects is clearly much more difficult than predicting the location of two objects in JIGSAWS. Furthermore, the network must learn additional cues such as the relative relationships between the tool and objects that interact with that tool. For example, the model should correlate hand and tool locations.

Despite the increased complexity, we achieve an accuracy of over 52% in action recognition using the tool usage predictions. For comparison we evaluated using the ground truth sensors as input into the LC-SC-CRF. We also evaluated a recent video-based approach comparable to the approach in Rohrbach et al. [38], which uses Improved Dense Trajectories (IDT). This Bag of Words method uses a sliding window of 30 frames with 2000 clusters on the HOG channel of IDT. Using this method, We achieve 56.29% accuracy on the 50 Salads. We think that incorporating more motion cues could be used to better predict the tool measurements.

Note that the results we report using the ground truth signals are lower than the ones in [5]. This is due to the fact that we train our model using larger splits effectively
Fig. 6: Heatmaps for occluding the input image with a sliding grey patch (10 × 10 pixels) and measuring the change in the prediction of left and right gripper.

<table>
<thead>
<tr>
<th></th>
<th>GT</th>
<th>CNN</th>
<th>IDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Salads</td>
<td>73.43%</td>
<td>52.18%</td>
<td>56.29%</td>
</tr>
</tbody>
</table>

TABLE III: Action recognition results on 50 Salads. GT results are using the ground truth tools, CNN uses the predicted tools, and IDT refers to the Improved Dense Trajectory results.

Fig. 7: CNN visualization on an image from 50 Salads where the “large spoon” is in motion. The points of attention, highlighted with red circles, are on the tool and human’s hand. The network learned a correlation between the object and the hand placement for this utensil.

Fig. 8: Example ground truth and predicted action sequences. Each color corresponds to a different action class. The top of each plot is the set of ground truth actions over time and the bottom is predicted actions using virtual sensor data.

This suggests that our model generalizes well to previously unseen tasks.

C. Discussion

In the experiments we show that action recognition performance improves when the images are annotated with virtual sensor readings learned from real data.

On JIGSAWS, when the tool positions are predicted for the same task that they are trained on, the RMS error for all tasks is sub-centimeter. Even when the network is trained on other networks the results are all within one to two centimeters.

We have proposed a method for sensory substitution where we regress domain-specific sensor signals from RGB video. We showed that our approach performs very well when regressing sensor information on two different datasets. We achieve state of the art action recognition accuracy on JIGSAWS and show that predicted kinematics can be even better proxies for action recognition than the real measurements.
Moreover, we show that our model generalizes to unseen tasks in the same domain. When challenged with a much more complex environment, like 50 Salads, we achieved similar action recognition accuracies as the state of the art using video only. Finally, we validated that the CNN is capable of learning a meaningful representation from the data in both domains by visualizing the network with two different methods. In future work, we would like to improve action recognition performance by combined our virtual sensors and video. Additionally, we would like to improve tool motion prediction by incorporating temporal information like velocities or movement.

References

