CAMPVis – A Game Engine-inspired Research Framework for Medical Imaging and Visualization

Christian Schulte zu Berge¹, Artur Grunau¹, Hossain Mahmud¹, and Nassir Navab¹,²

¹ Computer Aided Medical Procedures, Technische Universität München, Munich, Germany
² Computer Aided Medical Procedures, Johns Hopkins University, Baltimore, MD, USA

Clinical Motivation
- Intra-operative visualization provides surgeons with powerful support
- A broad range of imaging modalities available, each with different strengths and weaknesses
- Deployment in operating rooms yields various challenges for software developers

Approach
- 3D video games simulate complex environments providing real-time visualization
- MMOGs synchronize game state over thousands of computers
- Use game engine architecture for medical visualization framework

Main Design Goals
- Platform-independent, standard-compliant code base
- Focus on research usage (rapid prototyping) but also allow easy transfer to end-user products
- Sandbox environments for developers
- Support of distributed/decentralized computing

Overview

Software Architecture

Entity Component System
- Data-driven architecture, which is used often for video games [1,2]
- Introduces a database of entities and separates code into components (data domain) and systems (algorithm domain)
- Some modifications to the classic approach for CAMPVis

Pipeline concept
- Data stored in DataContainer as database
- Algorithms encapsulated in Processors
- Pipelines coordinate data and algorithms and implement concrete solutions

Module Architecture
- Separation of data and algorithm domain
- Separate GUI package
- Provides development-sandboxes

Selected Framework Features

Property System
- Allows for configuration of algorithms
 - Implicit getter/setter methods
 - Ensures thread safety
 - Automatically generated GUI

Network Communication
CAMPCom [3] and OpenIGTLink [4] support
- Real-time streaming of images, tracking information, control commands, etc.

Signal Manager
- Fusion of event manager messaging concept [2] with signal-slot pattern
- Signal processing runs its own thread
- Direct connection between sender and receiver → very flexible
- All messaging performed through central manager → easy tracking and monitoring
- Both synchronous and asynchronous messaging supported

Scripting Layer
- Optional Lua [5] scripting layer available
 - Scripting console to inspect and modify data model at runtime
 - Algorithms and pipelines can be implemented as Lua script instead of C++
 - Semi-automated Lua binding generation through SWIG [6]

Applications

So far, two large projects were successfully realized using the CAMPVis software framework:
- Multi-modal image-guided prostate biopsy framework [7] in collaboration with Klinikum Rechts der Isar, Munich, Germany
- Reference implementation of a predicate-based focus-and-context volume rendering technique for 3D ultrasound [8]

References