Orientation-Driven Ultrasound Compounding

IPCAI Conference 2014, Fukuoka, Japan

Christian Schulte zu Berge¹, Ankur Kapoor², Nassir Navab³

¹ Computer Aided Medical Procedures (CAMP), Technische Universität München, Munich, Germany
² Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA

Methods

Complex Ultrasound Image Formation

- Dependent on angle, probe pressure, patient positioning, ...
- Same anatomy may yield different information if scanned from different perspective or at different time

Traditional US Compounding Techniques:

- Assume undistorted input data
- Correlation between US frames depends on
- Important step towards “real” 3D Freehand Ultrasound

The above compounding scheme can be rewritten

\[\text{Uncertainty} = \frac{\sum_{c \in C} (1 - U_c(x)) ||U_c(x)||}{\sum_{c \in C} 1 - U_c(x)} \]

Introduction

Our Vision: Free Clinicians from Restrictive Scanning Protocols!

- Allow arbitrary trajectories
- Support incremental acquisition with interactive feedback on reconstruction

Our Contributions:

- Orientation-driven pressure compensation and frame clustering
- Uncertainty-based incremental information fusion

Orientation-Driven Inter-Frame Registration

- Correlation between US frames depends on proximity and orientation to each other [1]
- Windowed SSD with orientation-driven correlation term:

\[\sum_{p \in P} \sum_{n = -N}^{N} C(i, i + n) \cdot (I_i(p) - I_{i+n}(p'))^2, \]

\[C(i, j) = \exp \left(-\frac{n^2}{2\sigma^2} \right) \cdot \left(1 - \frac{2}{\pi} \acos \left(\frac{n_i \cdot n_j}{||n_i|| ||n_j||} \right) \right) \]

Pressure Compensation

- Apply deformable inter-frame registration to a grid of independent 1cm x 1cm patches

Orientation-Driven Frame Clustering

- Hierarchical clustering by frame orientation
- Compounding of clusters into independent volumes
- Uncertainty-based (e.g. Confidence Maps [2]) fusion of the compounded clusters

\[I(x) = \sum_{c \in C} (1 - U_c(x)) ||U_c(x)|| \]

Incremental Compounding

- The above compounding scheme can be rewritten into an incremental in-place algorithm

\[I_i = \frac{U_{i-1}I_{i-1} + (1 - U_c)I_c}{U_{i-1} + (1 - U_c)}, \]

\[U_i = U_{i-1} + (1 - U_c) \]

Accuracy

Comparing average target diameter in liver phantom

- Compounded US: 14.63 ± 0.48 mm
- CT: 14.5 ± 0.84 mm

Registration Quality

<table>
<thead>
<tr>
<th></th>
<th>Baseline NCC</th>
<th>SNR [dB]</th>
<th>Our Technique NCC</th>
<th>SNR [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phantom / constant pressure</td>
<td>0.90</td>
<td>19.39</td>
<td>0.94</td>
<td>23.16</td>
</tr>
<tr>
<td>Phantom / pressure changes</td>
<td>0.81</td>
<td>13.02</td>
<td>0.94</td>
<td>22.47</td>
</tr>
<tr>
<td>In-vivo leg / constant pressure</td>
<td>0.72</td>
<td>9.21</td>
<td>0.76</td>
<td>11.69</td>
</tr>
<tr>
<td>In-vivo leg / pressure changes</td>
<td>0.67</td>
<td>8.53</td>
<td>0.75</td>
<td>11.03</td>
</tr>
</tbody>
</table>

Results

- No pressure compensation
- No clustering
- With pressure compensation
- Frame clustering and uncertainty fusion

Conclusion

- Orientation-driven compounding approach superior to traditional techniques
- Important step towards “real” 3D Freehand Ultrasound

References
