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Abstract. Robust localisation and identification of vertebrae is an es-
sential part of automated spine analysis. The contribution of this work
to the task is two-fold: (1) Inspired by the human expert, we hypothesise
that a sagittal and coronal reformation of the spine contain sufficient
information for labelling the vertebrae. Thereby, we propose a butterfly-
shaped network architecture (termed Btrfly Net) that efficiently com-
bines the information across the reformations. (2) Underpinning the Btr-
fly net, we present an energy-based adversarial training regime that en-
codes the local spine structure as an anatomical prior into the network,
thereby enabling it to achieve state-of-art performance in all standard
metrics on a benchmark dataset of 302 scans without any post-processing
during inference.

1 Introduction

The localisation and identification of anatomical structures is a significant part
of any medical image analysis routine. In spine’s context, labelling of vertebrae
has immediate diagnostic and modelling significance, e.g.: localised vertebrae
are used as markers for detecting kyphosis or scoliosis, vertebral fractures, in
surgical planning, or for follow-up analysis tasks such as vertebral segmentation
or their bio-mechanical modelling for load analysis.

Vertebrae labelling. Like several analysis approaches off-late, vertebrae
labelling has seen successful utilisation of machine learning. One of the incipient
and notable works by Glocker et al. [2], followed by [3] used context-based fea-
tures with regression forests and Markov models for labelling. In spite of their
intuitive motivation, these approaches suffer a setback due to limited FOVs or
presence of metal insertions. On a similar footing, [7] proposed a deep multi-
layer perceptron using long-range context features. With the emergence of con-
volutional neural networks (CNN), Chen et al. [1] proposed a joint-CNN as a
combination of a random forest for initial candidate selection followed by a CNN
trained to identify the vertebra based on its appearance and a conditional depen-
dency on its neighbours. Without hand-crafting features this approach performed
remarkably well. However, since the CNN works on a limited region around the
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vertebra, it results in a high variability of the localisation distance. Recently,
Yang et al., with [8] and [9], proposed a deep, volumetric, fully-convolutional 3D
network (FCN) called DI2IN with deep-supervision. The output of DI2IN is im-
proved in subsequent stages that employ either message-passing across channels
or a convolutional LSTM followed by further tuning with a shape dictionary.

Owing to the equivariance of the convolutional operator and limited receptive
field, an FCN doesn’t always learn the anatomy of the region-of-interest. This is a
severe limitation as human-equivalent learning includes utilisation of anatomical
details aided with prior knowledge. An immediate remedy is to increase the
receptive field by going deeper, however this either comes at the cost of higher
model complexity or is just unfeasible due to memory constraints when working
with volumetric data. This opens an interesting research problem of encoding
anatomical knowledge into the network during training.

Prior & adversarial learning in CNNs. Recent work in [5] and [4] pro-
pose encoding (anatomical) segmentation priors into an FCN by learning the
shape representation using an auto encoder (AE). The segmentation is expressed
in terms of a pre-learnt latent space for evaluating a prior-oriented loss, which is
then used to guide the FCN into predicting an anatomically sound segmentation.
Our approach shares similarities with this approach with certain fundamental
differences: (1) Our approach is aimed at localisation, which requires a redefini-
tion of the notion of anatomical shape. (2) We employ an AE for shape regular-
isation, but do not ‘pre-train’ it to learn the latent space. We train the AE ad-
versarially in tandem with the FCN. Parallels can be drawn between end-to-end
learning of priors and learning the distribution of priors using generative adver-
sarial networks (GANs). Both have two networks, a predictor (generator) and
an auxiliary network which works on the ‘goodness’ of the prediction. In med-
ical image analysis where the scan size is large and the data samples are few,
inspired from an energy-based adversarial generation framework (Zhao et al.,
[11]), it is preferable to employ an adversary providing an anatomically-inspired
supervision instead of the usual adversaries that supervise with a binary value
(vanilla GAN) or Wasserstein distance.

Our contribution. In this work, we propose an end-to-end solution for ver-
tebrae labelling by training an FCN in an adversarial fashion thereby encoding
the local spine structure into it. More precisely, relying on the sufficiency of infor-
mation in certain 2D projections of 3D data, we propose: (1) A butterfly-shaped
network that operates on 2D sagittal and coronal reformations, combining in-
formation across these views at a large receptive field, (2) Encoding the spine’s
structure into the Btrfly net using an energy-based, fully-convolutional, adver-
sarial auto encoder acting as a discriminator. Our approach attains identification
rates above 85% without any post-processing stages, achieving state-of-art per-
formance.
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(a) (b)

Fig. 1: (a) Overview of our approach. (b) Label correcting capability of the AE when
trained as a denoising convolutional auto-encoder (red: corrupted, green: corrected).
This motivates the discriminator in our adversarial framework.

2 Methodology

We present our approach in two stages. First, we describe the Btrfly network
tasked with the labelling of the vertebrae. Then we present the adversarial learn-
ing of the local spine shape with an energy-based auto-encoder acting as the
discriminator. Fig. 1a gives an overview of the proposed approach and the mo-
tivation for prior-encoding is illustrated in Fig. 1b.

2.1 Btrfly Network

Working with 3D volumetric data is computationally restrictive, more so for lo-
calisation and identification that rely on a large context so as to capture spatially
distant landmarks. Consequently, there is a trade-off between working with low-
resolution data or resorting to shallow networks. Therefore, we propose working
in 2D with sufficiently–representative projections of the volumetric data. The
choice of projection is application dependant. Since we are working with bone,
we work on sagittal and coronal maximum intensity projections (MIP). The for-
mer captures the spine’s curve and the latter captures the rib-vertebrae joints,
both of which are crucial markers for labelling. Note that a naive MIP might
not always be the optimal choice of projection. Such cases are handled with a
pre-processing stage detailed in the Supplement.

Annotations. We formulate the problem of learning the vertebrae labels
as a multi-variate regression. The ground-truth annotation Y ∈ R(h×w×d×25) is
a 25-channeled, 3D volume with each channel corresponding to each of the 24
vertebrae (C1 to L5), and one for the background. Each channel i is constructed

as a Gaussian heat map of the form yi = e−||x−µi||2/2σ2

, x ∈ R3 where µi is the
location of the ith vertebra and σ controls the spread. The background channel
is constructed as, y0 = 1 − maxi(yi). The sagittal and coronal MIPs of Y are
denoted by Ysag ∈ R(h×w×25) and Ycor ∈ R(h×d×25), respectively.

Architecture. We employ an FCN to perform the task of labelling. Since
essential information is contained in both the sagittal and coronal reformations,
and since the spine is approximately spatially centred in both, exchange of
this information across views leads to an improved identification. We propose a
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Fig. 2: The Btrfly architecture. The xz- (blue) and the yz-arms (yellow) correspond
to the sagittal and coronal views. The kernel’s shape resulting in each of the blocks is
indicated as: {input channels} · {kern. height} · {kern. width} · {output channels}

butterfly-like network (cf. Fig 2) with two arms (xz- and yz-arms) each concerned
with one of the views. The feature maps of both the views are combined after a
certain depth in order to learn their inter-dependency. The x and y dimensions
could be made equal by zero-padding the smaller dimension.

Loss. We choose an `2 distance as the primary loss supported by a cross-
entropy loss over the softmax excitation of the ground truth and the prediction.
The total loss is expressed as:

Lb,sag = ||Ysag − Ỹsag||2 + ωH(Y
σ
sag, Ỹ

σ
sag), (1)

where Ỹsag is the prediction of the net’s xz-arm, H is the cross-entropy function,
and Yσ

sag = σ(Ysag), the softmax excitation. ω is the median frequency weighing
map (described in [6]), boosting the learning of less frequent classes. The loss
for the yz-arm is constructed in a similar fashion and the total loss of the Btrfly
net is given by Lb = Lb,sag + Lb,cor.

2.2 Energy-based adversary for encoding prior

Since the Btrfly net is fully-convolutional, its predictions across voxels are inde-
pendent of each other owing to the spatial invariance of convolutions. Whatever
information it encodes is solely due to its receptive field, which may not be
anatomically consistent across the image. We propose to impose the anatomical
prior of the spine’s shape onto the Btrfly net with adversarial learning.

Denoting the projected annotation as Yview, where view∈{sag,cor}, a sample
annotation consists of a 2D Gaussian at the vertebral location in each channel
(except y0). Looking at Yview as a 3D volume enables us in learning the spread
of Gaussians across channels and consequently the vertebral labels. However,
owing to the extreme variability of FOVs and scan sizes, it is preferable to learn
the spread of the vertebrae in parts. Therefore, we employ a fully-convolutional,
3D auto encoder (AE) with a receptive field covering a part of the spine at a
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(a) (b)

Fig. 3: (a) A overview of adversarial training showing the input to and the energy-based
supervision signal from the discriminators. (b) The composition of the energy-based
discriminator (EB-D). It gives the `2 reconstruction error as output.

time. The absence of fully-connected layers in the AE also removes the necessity
to resize the data, making it end-to-end trainable with the Btrfly net. Fig. 3a
shows the arrangement of the AEs as adversaries w.r.t the Btrfly net. In an
adversarial framework, the Btrfly net acts as the generator (G), and the local
manifolds learnt from Yview influence Ỹview and vice versa.

Discriminator. We devise the 3D adversary (D, cf. Fig. 3b) consisting of
the AE as a functional predicting the `2 distance between the input Yview and its
reconstruction by the AE, rec(Yview): D(Yview) = E = ||Yview − rec(Yview)||.
This energy, E is fed back into G for adversarial supervision, as in [11]. As it is an
energy-based functional, we interchangeably refer to the discriminator as EB-D.
Since Yview consists of Gaussians, it is less informative than an image. Therefore,
we avoid using max-pooling by resorting to average pooling. In order to have
a receptive field covering multiple vertebrae without using pooling operations,
we employ spatially dilated convolution kernels [10] of size (5 × 5 × 5) with a
dilation rate of 2 (only in image plane), resulting in a receptive field of 76× 76
pixels. At 1 mm isotropic resolution, this covers 2 to 3 vertebrae in the lumbar
region and more elsewhere.

Losses. As in any adversarial setup, EB-D is shown real (Yx(≡ Yview)) and
generated annotations (Yg(≡ Ỹview)), and it learns to discriminate between both
by predicting a low E for real annotations, whileG learns to generate annotations
that would trick D. For a given positive, scalar margin m, the following generator
and discriminator losses are optimised:

LD = D(Yx) + max(0,m−D(Yg)), and (2)

LG = D(Yg) + Lb,view. (3)

The joint optimisation of (2) and (3) for both the EB-Ds results in a G that
performs vertebrae labelling while respecting the spatial distribution of the ver-
tebrae across channels. We refer to this prior-encoded G as the ‘Btrflype’ net.

2.3 Inference

Once trained, an inference for a given input scan of size (h × w × d) proceeds
as: the desired sagittal and coronal MIP reformations are obtained and given
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Fig. 4: Effect of prior encoding: the prior-encoded Btrflype net successfully performs its
task of prevent overlapping labels (C6 & C7), consequently reordering all the vertebral
labels. The reported id. rates are per volume. Additional results in Supplement.

as input to the xz- and yz-arms of the Btrfly net, resulting in a (h × w × 25)
sagittal heatmap and (h×d×25) coronal heatmap. The values below a threshold
(T ) are ignored in order to remove noisy predictions. As the Gaussian kernel is
separable, an outer product of the predictions results in the final heat map as
Ỹ = Ỹsag ⊗ Ỹcor, where ⊗ denotes the outer product. The 3D location of the
vertebral centroids are obtained as the maxima in their corresponding channels.
Note that the EB-D is no longer required during inference as its role in encoding
the prior ends with the convergence of the Btrflype net.

3 Experiments

The evaluation is performed using a dataset introduced in [3] with a total of 302
CT scans (242 for training and 60 for testing) including various challenges such
as scoliotic spines, metal insertions, and highly restrictive FOVs. However, these
are cropped to a region around the spine which excludes the ribcage. Thus,
a naive sagittal and coronal MIP suffices to obtain the input images for our
approach. In order to enhance the net’s robustness, 10 MIPs are obtained from
one 3D scan, each time randomly choosing half the slices of interest. This leads
to a total of 2420 reformations per view for training (incl. a validation split of
100). We present the experiments with the Btrfly net trained as stand-alone
as well as with the prior-encoding discriminator EB-D. Batch-normalisation is
used after every convolution layer, along with 20% dropout in the fused layers of
Btrfly. Additionally, so as to validate the necessity of the combination of views,
we compare the Btrfly net’s performance with that of two networks working
individually on the views (denoted by Cor.+Sag. nets). The architecture of each
of these networks is similar to one arm of the Btrfly net. The optimiser’s setup
in all the three cases is similar: an Adam optimiser is employed with an initial
learning rate of λ = 1 × 10−3, working on data resampled to a 1 mm isotropic
resolution. λ is decayed by a factor of 3/4th every 10k iterations to 0.2× 10−3.
The training of Cor.+Sag. nets and Btrfly net converges at 60k iterations. Due
to an increased model complexity of joint networks, the Btrflype converges later
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Measures [3] [1] DI2IN[8] DI2IN∗[8] Cor.+Sag. Btrfly Btrflype

Id.rate 74.0 84.2 76.0 85.0 78.1 81.8 86.1
dmean 13.2 8.8 13.6 8.6 9.3 7.5 7.4
dstd 17.8 13.0 37.5 7.8 8.0 5.4 9.3

Table 1: Performance evaluation and comparison of our approach (without threshold-
ing) with Glocker et al. [3], Chen et al. [1], & Yang et al. [8]. DI2IN refers to stand-alone
FCN, while DI2IN* includes use of message passing and shape dictionary. We do not
compare with experiments in [8] that use additional undisclosed data.

(≈80k iterations). As suggested in [11], we initialise m with 20 and gradually
reduce it to zero where the Nash equilibrium is attained.

Fig. 5: A precision-recall curve with F1
isolines, illustrating the effect of the T dur-
ing inference. For any T , Btrflype offers a
better trade-off between P and R.

Approach P R F1

Cor.+Sag.(T=0.05) 74.7 77.0 75.8
Btrfly(T=0.1) 78.7 79.1 78.9

Btrflype (T=0.2) 84.6 83.7 84.1

Table 2: The optimal P and R values
based on F1 score, along with the optimal
T . R at optimal-F1 of Btrflype is compa-
rable to state-of-art.

Evaluation & discussion. For evaluating and comparing the performance
of our network with prior work, we use two metrics defined in [2] namely, the
identification rates (id. rate, in %) and localisation distances (dmean & dstd, in
mm). We report the measures in Table 1. It lists the performance of three variants
of our network and compares them with several recent approaches. We address
three main questions through our experiments: (1) Why the butterfly shape?
Compared to Cor.+Sag. nets, performance improves with the Btrfly net. This
is because the predictions across views in the Btrfly net are spatially consistent
with each other. In case of separate nets, the lack of this consistency weakens the
Gaussians in the final stage of heat map fusion. We observe a 6% improvement
in the id.rate over a naive 3D FCN (DI2IN) with a significantly better dmean.
(2) Why the adversarial prior-encoding? In addition to the advantages of the
Btrfly net, the Btrflype net possesses adversarially encoded spatial distribution
of the vertebrae. This results in about a 4% increase in the id. rate. Compared to
the prior work, Btrflype net achieves state-of-art measures in both the metrics,
and it does so by being a single network trained end-to-end. (cf. Fig. 4) (3)



8 Sekuboyina et al.

Relation to latent-space learning? Learning latent representations and projecting
the generated annotations onto this latent space has been addressed in [5,4].
Conversely, EB-D is more flexible as it learns from scratch and converges to
a latent manifold best representing the true as well as generated data. The
reconstruction capability of the AE for a generated sample is of interest. Using
the output of the AE instead of Btrflype, we achieve an id.rate of 75% with a
dmean of 19 mm. This is in spite of the AE not receiving any explicit supervision
on the ‘true-ness’ of the annotation it is reconstructing, indicating the AEs’
capability of transferring the learning to contrastive samples.

Precision & Recall. The localisation distance and the id.rate capture the
ability of the network in accurately labelling a vertebra. However, both the mea-
sures are agnostic to false positive predictions. Accounting for spurious predic-
tions becomes important especially when dealing with FCNs, as the predictions
depend on a locally constrained receptive field. In our case, the false positives are
controlled by the threshold T as described in Section 2.3. Accounting for these,
we define two measures, precision (P ) and recall (R) as: P = #hits

#predicted and

R = #hits
#actual , where #hits is the number of vertebrae satisfying the condition of

identification as defined for id.rate, #predicted is the vertebrae in the prediction,
and #actual is the vertebrae actually present in the image. Observe that R is
synonymous to id.rate. We calculate these metrics for each scan and report the
average over the entire test set. Fig. 5 shows a precision-recall curve generated
by varying T between 0 to 0.8 in steps of 0.05, while Table 2 shows the perfor-
mance at the F1-optimal threshold. In spite of not choosing an recall-optimistic
threshold, our networks perform comparably well. Notice the over-arcing nature
of Btrfly over Cor.+Sag. nets and that of Btrflype over others.

4 Conclusions

We validate the sufficiency of 2D orthogonal projections of the spine for localising
and identifying the vertebrae by combining information across the projections
using a butterfly-like architecture. In addition to looking at a local receptive field
like any FCN, our approach considers the local structure of the spine thanks to an
adversarial energy-based prior encoding, thereby outperforming the state-of-art
approaches as a stand-alone network without any post-processing stages.
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5 Supplementary Material

5.1 Case study on a non-spine-centred scan

The benchmark dataset used in Section 3 of our work is mostly spine-centred,
and the naive maximum intensity projections contain no occlusions. However,
in certain full-body scans, the spine is obstructed by the ribcage in a MIP of
the entire scan, or the spine is not spatially centred in both the views, thus not
taking full advantage of Btrfly net’s view fusion (cf. Fig. 6a). Such cases can be
handled by a introducing a pre-processing step before the Btrflype net in the
form of an ‘object-detection’ network.

For such scenario, we construct the MIPs in two stages. The first MIP is
constructed on the entire scan. On this, we use a single-shot object detection
(SSD) inspired architecture [1] trained to identify occluded spines (cf. Fig. 6a).
Once the spine is located, we construct the second pair of MIPs based on the
spine-slices, which are then used as inputs to the Btrflype net (cf. Fig. 6b,c).
The ground truth for the SSD net can be constructed from the ground truth
annotation of the vertebral centroids. We use a generic 16-layer residual CNN
with an SSD extension. This use-case is illustrated on a scan from the training
set of the xVertSeg [2] dataset. Note that we used the xVertSeg data only for
inference and not for re-training the network. The centroids of the vertebrae are
obtained from the maximum point of the distance transform of the segmentation
map (xVertSeg has voxel-level annotations from L1 to L5).
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(a) (b)

(c) (d)

Fig. 6: An illustration of the extension to Brtflype net. (a) Naive sagittal and coronal
MIPs on the entire scan with the bounding box predictions (in blue) of our SSD net.
Observe the ribcage obstructing the spine. (b) Improved MIPs constructed from the
slices containing the spine based on the localisation in (a). (c) Output of the Btrflype

net, resulting in an 80 % id.rate. Also observe the incorrect localisation of T8 and L5,
along with prediction noise in sagittal view owing to the non-aligned spine in both
views. We believe that aligning the spine using its detection could further improve the
prediction. (d) The ground truth centroids constructed from the voxel-level annotation
map of scan. Since xVertSeg data only has lumbar annotations, we visualise the lumbar
centroids.
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Fig. 7: Additional quantitative results. MIP images with predictions of the three
variants of our approach at T=0 for all cases. The spine’s local structure is conserved
in the predictions of Btrflype. Also observe that, as a consequence of prior encoding,
in some cases labels are predicted in spite of no useful spatial information, albeit the
strength of these predictions is less.


	Energy-based adversarial learning for vertebrae labelling
	Introduction
	Methodology
	Btrfly Network
	Energy-based adversary for encoding prior
	Inference

	Experiments
	Conclusions
	Supplementary Material
	Case study on a non-spine-centred scan



