Quantitative comparison of movements for medical training
Tobias Sielhorst, Tobias Blum, Nassir Navab
Computer Aided Medical Procedures (CAMP) - TU München

Scenario
• Expert performs medical act
• Students perform the same action
• Systems automatically provides quantitative differences in performance

Challenge
• Variable speed of performance of the same valid action
→ Each point in one curve must be temporally registered to a point in other curve (no bijectivity)

Outcome
• Both, DTW and LCSS solve temporal registration problem with the same computational effort, but DTW gives superior results
• After synchronization (temporal registration) a direct comparison is possible:
 • by AR 3D visualization from different viewpoints at any speed
 • as a quantitative measure of success in reproducing actions
• Statistical comparison of many experts’ performances allows automatic classification of important parts of complex movement
• Alignment of data not limited to 3D trajectory, e.g. forces, other parameters of simulator
• First promising trials on online synchronization

Comparison of existing algorithms: LCSS vs. DTW

LCSS
- Points are matched or not (impractical for replay)
- Each point is matched only once
- Threshold matching
- Maximizes matched points (this distance measure is not optimal for different update rates of tracking systems)

DTW
- All points are matched at least once
- Minimizes sum of distance of matches

Offline synchronization for
• Comparing novice to expert
• Obtaining typical (average) movements of experts
• Finding critical parts of a performance
Online synchronization provides:
• Interactive feedback during performance
• Context dependent information

Acknowledgements: We would like to thank Frank Sauer, Ali Khamene, and Sebastian Vogt from Siemens Corporate Research in Princeton, USA for the courtesy of providing us with the AR system RAMP. We would like to thank A.R.T. GmbH, Herrsching, Germany for the courtesy of providing their multiple camera tracking system. Furthermore, we thank Rainer Burgkart and Tobias Obst, Klinikum Rechts der Isar, Munich, Germany for the courtesy of providing us with their Delivery Simulator.