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Abstract

Medical imaging data suffers from the limited availability of annotation because
annotating 3D medical data is a time-consuming and expensive task. Moreover,
even if the annotation is available, supervised learning-based approaches suffer
highly imbalanced data. Most of the scans during the screening are from normal
subjects, but there are also large variations in abnormal cases. To address these
issues, recently, unsupervised deep anomaly detection methods that train the model
on large-sized normal scans and detect abnormal scans by calculating reconstruc-
tion error have been reported. In this paper, we propose a novel self-supervised
learning technique for anomaly detection. Our architecture largely consists of
two parts: 1) Reconstruction and 2) predicting geometric transformations. By
training the network to predict geometric transformations, the model could learn
better image features and distribution of normal scans. In the test time, the geo-
metric transformation predictor can assign the anomaly score by calculating the
error between geometric transformation and prediction. Moreover, we further
use self-supervised learning with context restoration for pretraining our model.
By comparative experiments on clinical brain CT scans, the effectiveness of the
proposed method has been verified.

1 Introduction

Supervised deep learning methods have achieved state-of-the-art performances various tasks [1].
However, medical imaging data suffer from the limited availability of annotation because annotating
3D medical data is a time-consuming and expensive task. Moreover, even if the annotation is available,
supervised learning-based approaches suffer highly imbalanced data. In other words, most of the
scans during the screening are from normal subjects, and only a few subjects are the abnormal with a
large intraclass variation. To address these issues, recently, unsupervised deep anomaly detection
methods [2, 3, 4, 5, 6, 7, 8, 9] have been introduced based on autoencoder-based reconstruction
methods [10] or variational autoencoders (VAE) [11]. These methods train a model on large-sized
normal scans and detect abnormal scans by calculating reconstruction error because abnormal scans
are out-of-distribution, making the model have difficulties reconstructing abnormal areas.

In this paper, we propose a novel anomaly detection method which based on self-supervised learning
[12, 13]. Our architecture largely consists of two parts: 1) Reconstruction and 2) predicting geometric
transformations. By training the network to predict geometric transformations, the model could
learn the distribution of normal scans in a better way. In the test time, the geometric transformation
predictor can assign the anomaly score by calculating the error between the geometric transformation
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Figure 1: Proposed network architecture for anomaly detection. The numbers in the Blocks denote
the number of filters in the convolution layer. z represents the latent space, σ and µ represent the
variance and mean of the latent distribution. There are two outputs for the model: 1) reconstructed
images, 2) predicted geometric transformation.

we apply for the given sample and the prediction of the deep neural network for the geometric
transformations. Moreover, we further use self-supervised learning with context restoration for
pretraining our model by learning better image features from complex medical image [4].

Our main contributions are: (1) We introduce a new anomaly detection framework that defines an
anomaly score by considering both pixel-level reconstruction and image-level geometric transfor-
mation prediction. The reconstruction-based module exploits the local fine-grained information to
detect out-of-distribution pixels. The image-level geometric transformation module captures the
global context to define an anomaly score. (2) To verify the effectiveness of our method, we collected
clinical data where we have various anomaly cases in the test set. By comparative experiments
on clinical brain CT scans, we show that our method can detect anomaly samples more accurately
because it utilizes the complementary information of the local reconstruction-based approach and
global geometric transformation-based approach.

2 Method and Materials

We propose a framework for predicting the anomaly score based on global geometric information
and local fine-grained information.

As shown in Figure 1, our framework consists of VAE for reconstructing the image based on
distribution learned during the training and geometric transformation predictor for estimating the
geometric transformation applied for the given input image. The details will be introduced in the
following subsections.

Pretraining with Context Restoration. To exploit the information in the training data and learn
general features of brain CT images, we first train our model with the context restoration. The VAE
structure is trained by restoring the context from inputs whose patches are swapped. For swapping the
patches in the image, two points are extracted from non-zero parts of the image in axial orientation,
and then a patch of size 1

8× image size is created with the extracted point at the center of the patch.
These patches are then swapped. The objective function is designed to reconstruct the original image
from the swapped image as

Lcr = ‖(xi − f(x̂i))‖2 (1)

where xi, x̂i denote the original input image and the swapped image, respectively. f denotes the
function for variational autoencoder.

Multi Task Learning. As shown in Figure 1, our model consists of VAE and geometric transforma-
tion predictor. Inspired by [14, 12], the self-supervised learning based on pretext from geometric
transformation is used in our method. For training geometric transformation predictor, the labels
qi are generated by rotation the sample in [0◦, 90◦, 180◦, 270◦] at random or translating the image
by 1

8 th of the image size in vertical or horizontal. The number of permutations of rotations and
translation combinations gives the number of neurons at the output of the fully connected layer. The
rotation and translation help in learning the global geometric features of in-distribution healthy scans.
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Normal volumes Normal slices Abnormal volumes Abnormal slices
Training 119 16506 - -

Validation 30 4126 - -
Test 30 4314 44 4805

Table 1: Distribution of the number of CT volumes and slices in this study.

The geometric transformation predictor is trained by

Lgeo = −
N∑
i

qi log g(x̃qi) (2)

where g denotes the function for geometric transformation predictor which produces the output
for representing the probability for the corresponding transformation, x̃qi denotes the geometric
transformed input image by qi.

In addition to the geometric transformation predictors, the VAE is fine-tuned to reconstruct the
transformed images. As a result, the overall loss function for our model is defined as

Lmultitask = Lgeo + εLrec (3)

where Lrec = ‖(xi − f(xi))‖2 and ε denotes a scaling factor that balance the two loss terms.

Anomaly Score Calculation. The proposed method has two different outputs, one corresponding
to the softmax score from the geometric transformation predictor, and the second output is the
reconstruction of the images from the decoder part. The scores from both the outputs are combined to
give a single anomaly score. The score is calculated using the normalized weighted averaging using
parameter λ which serves as a hyperparameter. The combination can be represented as follows.

score = (1− λ)sg + λsr (4)

where sg and sr represents the anomaly scores from the geometric transformation head and recon-
struction, respectively. The anomaly score from the geometric transformation sg is averaged value
obtained from possible variations in the geometric transformation in the test time. The anomaly score
from reconstruction was defined as sr = α× ‖(xi − f(xi))‖2. α is the scaling factor. The λ value is
empirically selected to be 0.5 in the experiments.

Dataset. To evaluate our approach, the clinical brain CT scans are used. Table 1 shows detailed
information for the dataset. In particular, the test set contains various anomalies as followings: atrophy
(20 volumes), intracranial bleeding (11 volumes), ischemia (9 volumes), cavernoma (1 volume),
aneurysm (1 volume), bleed (1 volume), and tumor (1 volume). Please note that the models are
trained from only normal slices.

3 Results and Discussion

Metrics. To measure the anomaly detection performance (classification of anomaly slice and normal
slice), Area under the receiver operating characteristic curve (AUROC) and Area under the precision-
recall curve (AUPR) are adopted. In addition, we also provide the segmentation performance based
on the dice similarity coefficient (DSC) because previous anomaly detection approaches evaluated the
segmentation performance [3, 7]. Please note that our method more focuses on anomaly detection,
not segmentation.

Results. For comparison, we implemented state-of-the-art anomaly detection methods in brain
images [3, 7]. For the ablation study, we also implement the model with only reconstruction loss
Lrec after pretraining (i.e., VAE with Pretraining (ours)). Table 2 shows the results of the anomaly
detection and segmentation. As shown in the table, by encouraging the model to learn better medical
features with pretraining (context restoration), VAE with Pretraining improves AUROC and AUPR
compared with VAE [7]. Moreover, our multitask framework further improves the classification
performance in terms of AUROC and AUPR and it outperforms [3, 7]. However, the localization
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performance of the multi-task framework is slightly worse than others because the encoder is jointly
trained to reconstruct images and predict at the same time and the segmentation performance fully
depends on the reconstruction part.

AUROC AUPR DSC
VAE [7] 0.668 0.704 0.110 ± 0.021

Context-encoding VAE [3] 0.766 0.640 0.112 ± 0.021
VAE with Pretraining (ours) 0.673 0.772 0.112 ± 0.021

Multi-task Framework (ours) 0.822 0.868 0.086 ± 0.024

Table 2: Comparison with state-of-the-art anomaly detection methods.

Discussion and Conclusion. This paper introduces a novel architecture for anomaly detection in
brain CT scans. Our method uses two-types of self-supervision to consider the global context to detect
anomaly images and also improve the model in the pretraining stage. The experimental results on
clinical brain CT images show that the pretraining with self-supervised learning (context restoration)
can improve the performances in terms of classification and localization. Moreover, the proposed
multi-task framework outperforms other anomaly detection methods in terms of anomaly detection.
However, there is a tradeoff between the classification performance and the segmentation performance.
It should be deployed depending on the real-world application (i.e., whether the classification is
important or the localization is important). This paper verifies the importance of self-supervised
learning in anomaly detection problems and can present a new direction for future research in the
medical domain.
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4 A Broader Impact Statement

Deep learning in Computer-aided diagnosis has helped in enhancing the life of clinical practitioners
and patients. To deploy deep learning algorithms we need annotations for training the model which
are expensive in medical applications. Self-supervised learning tries to solve the problem by using
self-annotated data and obtains a very good performance compared to supervised learning tasks
[15]. This work will help progress the field of anomaly detection using self-supervised learning.
The problem of unsupervised anomaly detection has always been considered from a segmentation
perspective. In this work, we try to extend this work to the classification regime by including self-
supervised out of distribution detection. This paper verifies the importance of self-supervised learning
in anomaly detection problems and presents a new direction for future research in the medical domain.
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