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Abstract

We present a revised pipe-line of the existing 3D object de-
tection and pose estimation framework [10] based on point
pair feature matching. This framework proposed to repre-
sent 3D target object using self-similar point pairs, and then
matching such model to 3D scene using efficient Hough-like
voting scheme operating on the reduced pose parameter
space. Even though this work produces great results and
motivated a large number of extensions, it had some general
shortcoming like relatively high dimensionality of the search
space, sensitivity in establishing 3D correspondences, hav-
ing performance drops in presence of many outliers and low
density surfaces.

In this paper, we explain and address these drawbacks
and propose new solutions within the existing framework. In
particular, we propose to couple the object detection with a
coarse-to-fine segmentation, where each segment is subject
to disjoint pose estimation. During matching, we apply
a weighted Hough voting and an interpolated recovery of
pose parameters. Finally, all the generated hypothesis are
tested via an occlusion-aware ranking and sorted. We argue
that such a combined pipeline simultaneously boosts the
detection rate and reduces the complexity, while improving
the accuracy of the resulting pose. Thanks to such enhanced
pose retrieval, our verification doesn’t necessitate ICP and
thus achieves better compromise of speed vs accuracy. We
demonstrate our method on existing datasets as well as on
our scenes. We conclude that via the new pipe-line, point
pair features can now be used in more challenging scenarios.

1. Introduction
Many computer vision applications require finding the

object of interest in either 2D or 3D scenes. The objects
are usually represented with the CAD model or object’s 3D
reconstruction and typical task is detection of this particular
object instance in the scenes captured with RGB/RGBD or a
depth camera. Detection considers determining location of
the object in the input image, usually denoted by the bound-

Depth 
Image

Segmentation OursMatching Without ICP

Depth ImageScene

Segmentations

Close UpMatching Without ICP

Figure 1. Outputs from our approach. Our segmentation aided
matching has improved detection rates along with accurate poses.

ing box. However, in many scenarios, this information is
not sufficient and complimentary 6DOF pose (3 degrees of
rotation and 3 degrees of translation) is also required. This is
typical in robotics and machine vision applications. Conse-
quently, the joint problem of localization and pose estimation
is much more challenging due to the high dimensionality
of the search space. In addition, objects are often sought in
cluttered scenes under occlusion and illumination changes
and also close to real-time performance is usually required.
In this paper, we rely only on depth data, which alleviates the
problem of illumination changes. One of the most promis-
ing algorithms for matching 3D models to 3D scenes was
proposed by Drost et al. [10]. In that paper, authors couple
the existing idea of point-pair features (PPF), with an effi-
cient voting scheme to solve for the object pose and location
simultaneously. Given the object’s 3D model, the method
begins by extracting 3D features relating pairs of 3D points
and their normals. These features are then quantized and



stored in a hash table and used for representing the 3D model
for detection. During run-time stage, the same features are
extracted from a down-sampled version of a given scene.
The hash-table is then queried per extracted/quantized fea-
ture and a Hough-like voting is performed to accumulate the
estimated pose and location, jointly. In order to overcome
complexity of the full 6DOF parametrization, assumption is
made that at least one reference point in the scene belongs to
the object. In that case if the correspondence is established
between that reference point in the scene and one model
point there, and if their normals are aligned, then there is
only one degree of freedom, rotation around the normal, to
be computed in order to determine the object’s pose. Based
on this fact, a very efficient voting scheme has been proposed.
The great advantage of this technique lies in its robustness
in presence of clutter and occlusion. Moreover, it is possible
to find multiple instances of the same object, simply by se-
lecting multiple peaks in the Hough space. While operating
purely on 3D point clouds, this approach is fast and easy to
implement.

Due to its pros, aforementioned matching method im-
mediately attracted attention of scholars and was plugged
into many existing frameworks. Moreno et al. used it to
constrain a SLAM system by detecting multiple repetitive
object models [21]. They also devise a strategy towards an
efficient GPU implementation. Another immediate indus-
trial application is bin picking, where multiple instances of
the CAD model is sought in a pile of objects [13]. Besides,
there is a vast number of robotic applications [3, 20] where
this method has been applied.

The original method also enjoyed a series of add-ons
developed. A majority of these works concentrated on aug-
menting the feature description to incorporate color [5] or
visibility context [14]. Choi et al. proposed using points or
boundaries to exploit the same framework in order to match
planar industrial objects [6]. Drost et al. modified the pair
description to include image gradient information [9]. There
are also attempts to boost the accuracy and performance of
the matching, without touching the features. Figueiredo et al.
made use of the special symmetric object properties to speed
up the detection by reducing the hash-table size [8]. Tuzel
et al. proposed a scene specific weighted voting method
by learning the distinctiveness of the features as well as the
model points using a structured SVM [22].

Unfortunately, despite being well-studied, method of
Drost et al. [10] is often criticized by high dimensionality of
the search space [4], being sensitive to 3D correspondences
[16], having performance drops in presence of many outliers,
and low density surfaces [19]. Furthermore, the succeeding
works report to significantly outperform the technique in
many datasets [12, 4]. Yet, these methods work with RGB-D
data, cannot handle occlusions and heavily depend on the
post-processing and pose refinement.

In defense of the point pair features, we propose a revised
pipeline, in which we address the crucial components of
the framework. Instead of targeting the specific part of the
original method as others, we revise the whole algorithm
and draw a more elaborate picture of an improved object
detection and pose estimation method.

Our approach starts by generating more accurate model
representation relaying on PPFs. Since the normals are inte-
gral part of the PPFs, we compute them accurately by a sec-
ond order approximation of the local surface patches. Giving
different importance to the PPF is also important in build-
ing more reliable model representation. Unlike [22] where
scene dependent PPF weighting has been performed, we rely
on ambient occlusion maps [18] and associate weights to
each model point, obtained via visibility queries over a set
of rendered views. This is scene independent and causes a
cleaner Hough space, eventually increasing the pose accu-
racy. During the online operation, the scene (depth map)
is first segmented into multiple clusters, in a hierarchical
fashion. In our context, coarse-to-fine/hierarchical segmen-
tation refers to a set of partitioning varying from under- to
over-segmentation. We detect objects in all segments, sepa-
rately. Note that, while a variety of methods also segment the
3D model and use the parts [15], we deliberately avoid this,
because the proposed matching is already robust to clutter
and occlusion, which would be present in distinct clusters.
By introducing a hierarchy of depth segment clusters with
varying sizes, we deal with the segmentation errors. Pro-
cessing disjoint segments inherently reduces the clutter and
thus, the voting space gets much cleaner. We can then have
a better detection rate, with a more accurate pose. Thanks to
the same reason, we can detect small objects as well as large
ones. This also improves the ability to find multiple objects
without cluttering the Hough space. These benefits come
with no additional computational cost. In fact, choosing
reasonable segment sizes often reduce the run-time.

Our voting scheme makes effective use of the computed
model weights and an enhanced Hough voting to achieve fur-
ther accuracy of poses with more correct detections. Finally,
all the estimated hypotheses in all segments are gathered and
checked through an occlusion and clutter aware hypothesis
verification. Moreover, thanks to entire procedure, the neces-
sity of ICP pose refinement is minimized, further speeding
up the real life applications. To accomplish all this, neither
the feature representation nor the matching scheme is altered.
This way, all the other methods, benefiting the similar frame-
work can enjoy the contributions. Fig. 1 shows visual results
from our ameliorated pipeline.

We evaluate our approach quantitatively and qualitatively
on both synthetic and real datasets. We demonstrate the
boosted pose accuracy along with the improvements in de-
tection results and compare it to the state of the art. We show
that the proposed pipeline yields more accurate poses, an
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Figure 2. Illustration of the proposed pipeline. First input CAD models are trained using ambient occlusion maps as weighting. Each captured
scene is first segmented into smaller regions and each region is matched to trained model. Per each segment, we retain many hypothesis and
verify using the rendered CAD model. We rank the hypothesis according to the scores and reject the ones with low confidence.

increased detection rate and reduced complexity. The fol-
lowing sections are devoted to the related work, description
of the proposed method and experiments.

2. Method
Our modeling and matching framework follows the one of

Drost. et al. [10]. Our contributions lie in an enhanced model
representation, along with the introduction of segmentation
into the voting and a fast hypothesis verification. We will
now describe this object detection pipeline, visualized in Fig.
2.

2.1. Model Representation

Given a mesh or a 3D point cloud, we represent the model
by first computing the surface normals and the weights. Sub-
sequently, the points are downsampled and a hash-table is
created, storing the quantized pair features as well as the
weights and the rotation angles to the ground plane. In this
section, we give a detailed description of these steps.

2.1.1 Surface Features

Our features to describe the surface is called the point pair
features (PPF). PPFs are antisymmetric 4D descriptors of a
pair of oriented 3D points m1 and m2, constructed as:

F(m1,m2) = (‖d‖2,∠(n1,d),∠(n2,d),∠(n1,n2))
(1)

where d is the difference vector, n1 and n2 are the normals
at m1 and m2. ‖·‖ is the Euclidean distance and in this
paper, we always compute the angle between two vectors as
follows:

∠(v1,v2) = tan−1
(‖v1 × v2‖

v1 · v2

)
(2)

This doesn’t suffer from numerical accuracy with small an-
gles, and it is guaranteed to provide results in range [0, π).

During the training stage, the vector F(m1,m2) is quan-
tized and indexed. In the test stage, same features are ex-
tracted from the scene and compared to the database.

2.1.2 Computing Model Normals

Since our features make heavy use of the surface normals,
the method doesn’t tolerate inaccurate estimations of those.
Yet, for efficiency reasons, many algorithms resort to linear
approaches, where the eigen-decomposition of the covari-
ance matrix is utilized. However, the neighborhoods of local
structures are not well represented by planar patches and
thus first order approaches do not suffice in terms of accu-
rately representing 3D models. A better approach is to use
2nd order terms, where the convexity and concavity are also
modeled. Even though computing 2nd order approximations
are costly for online phase, it is safe to use them in the offline
stage. Hence, our objective is, to find the parameters of a
second order polynomial, approximating the height field of
the neighboring points, given a local reference frame [1].
Formally, given a point pi on the set P ∈ R3, MLS operates
by fitting a surface of order m in a local K-neighborhood
{pk} and projecting the point on this surface. Fitting is es-
sentially a standard weighted least squares estimation of the
polynomial surface parameters. The closer the neighbors
are, the higher the contribution is. This is controlled by the
weighting function w(pi) = exp(−‖pi − pk‖/2σ2

mls). The
point pi is then projected on the second order surface. This
process is repeated for all points resulting in a smoothed
point set with well defined normals. σmls can also be se-
lected adaptively. The details are omitted, and we refer the
reader to [1]. We show the effect of this scheme in Fig 3(c).

2.1.3 Weighting Model Points

The original technique treats all sampled points equally. Sim-
ilar to [22], we argue that not all points carry the equal im-
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Figure 3. Model preparation. a) The original mesh. b) 1st order
MLS smoothing. c) 2nd order approximation. d) Poisson Disk
Sampling. e) Normals of sampled cloud. f) Occlusion map.

portance for matching. However, while authors in [22] are
performing a scene dependent weighting and learning for
a given task, we emphasize the necessity of a scene inde-
pendent one. Unlike [22] however, our goal is not only to
improve the detection rate, but to get better pose accuracy as
well. For that, we are trying to focus on the visible surfaces
of the object, where the normals are accurate and repeatabil-
ity is better. Consequently, we base our weighting strategy
on ambient occlusion maps [18]. Given a hemisphere Ω, the
occlusion Ap at point p on a surface with normal n can be
obtained by computing the integral of the visibility function
V :

Ap =
1

π

∫
Ω

V (p · w)dw (3)

V is a dirac delta function, defined to be 1 if p is occluded
in the direction of w and 0 otherwise. This integral is ap-
proximated via rendering the model from several angles
and accumulating the visibility per each vertex. The cosine
weighted average is then reported as the vertex-wise occlu-
sion value. Based on Ap, we propose to weigh the entries of
the hashtable. Thus, given the hashtable bins, our weights
are nothing but a normalized, geometric mean of Amr and
Ami

. This way, the likelihood of using a potentially hidden
point is reduced. In the experiments section, we show that
even though this weighting doesn’t necessarily increase the
detection rate, it improves the accuracy of the resulting pose.

2.1.4 Global Model Description

Given the extracted PPF, the global description is imple-
mented as a hashtable mapping the feature space to the space
of point pairs. To do this, the distances and the angles are
sampled in steps of ddist and dangle = 2π/nangle respec-
tively. These quantized features are then used as keys to the

hashtable. The pair features, which map to the same bucket
are grouped together in the same bin, along with the weights.
To reduce the computational complexity, a careful down-
sampling is required at this stage, which would respect the
quantization properties. This requires all the points to have
at least ddist distances. We found out that using a Poisson
Disk Sampling algorithm [7], this is ensured to an acceptable
extent. This algorithm consists of generating samples from
a uniform random distribution where the minimum distance
between each sample is 2r. This suggests that, a disk of
radius r centered on each sample does not overlap any other
disk, satisfying our quantization constraint.

2.2. Online Matching

Our input in runtime is only a depth image, typically
acquired by a range sensor. First, the required normals are
computed using SRI method proposed by Badino et al. [2].
This choice is motivated by the grid structure of the range
image and the availability of the camera matrix. While not
being identical to model normals, they are both accurate
and computed quickly. The scene is then downsampled in
a similar fashion to model creation. The triangulated depth
points are then subject to a voting procedure, over the local
coordinates. This section is devoted to the description of a
coupled segmentation and voting approach, together with
pose clustering and a hypothesis verification.

2.2.1 Hough Voting

Having a fixed scene point pair (sr, si), we seek the optimal
model correspondence (mr,mi) to compute the matching
and 6DOF pose. Unfortunately, due to quantization, ambigu-
ities and the noise in data, such assignment cannot be found
by a simple scan. Instead, a voting mechanism, resembling
Generalized Hough Transform is conducted. While votes
can be cast directly on 6DOF pose space, Drost et al. [10]
proposed an efficient scheme, reducing the voting space to
2D, using local coordinates. Whenever a model pair, corre-
sponding to a scene pair is found, an intermediate coordinate
system is established, where mi and si are aligned by rotat-
ing the object around the normal. The planar rotation angle
αm for the model is precomputed, while the analogous for
the scene point αs is computed online. The resulting planar
rotation angle around x-axis is found by a simple subtraction,
α = αm − αs.

An accumulator Acc is 2D voting space composed of mr

(the model index) and α. It collects votes for each scene
reference point. mr is already a discrete entity, while α is
a continuous one, subject to discretization over the voting
space. Unlike original method, we also maintain another
accumulator Accα retaining the weighted averages of the
corresponding α values, for each bin in Acc. This is done
for the sake of not sacrificing further accuracy.



Notice that, because the pose parameters and the model
correspondence are recovered simultaneously, an incorrect
estimation of one, directly corrupts the other. This makes the
algorithm sensitive to noisy correspondences. To compen-
sate for these artifacts, we propose to vote with the computed
weights in Section 2.1.3. Moreover, in presence of signifi-
cant noise, correct correspondences can fall into neighboring
bins, decreasing the evidence. Thus, when voting, the value
of each bin is added also to the closest bins. Subsequently,
we perform a subpixel maximization over the continuous
variable α by fitting a second order polynomial to the k-nn
of the discrete maximum and use αk, obtained from the
weighted averaging of the corresponding bins.

2.2.2 Matching Disjoint Segments

Our method employs a pre-segmentation to partition the
scene into different meaningful clusters. Each cluster is then
processed separately, having distinct Hough domains. This
is different than previous works like [15], in which the model
is also segmented.

We treat the depth image as an undirected graph G =
{V,E}, with vertices vi ∈ V and edges (vi, vj) ∈ E. As a
dissimilarity measure, each edge has a non-negative weight
w(vi, vj). We then seek to find a set of components C ∈ S,
where S is the segmentation. The component-wise similarity
is achieved via the weights of the graph. Felzenszwalb and
Huttenlocher propose a graph theoretic segmentation algo-
rithm, addressing a similar problem [11]. Their approach is
designed for RGB images, whereas we adapt it to depth im-
ages. The algorithm uses a pair-wise comparison predicate
(P ), which is defined as:

P (C1, C2) =

{
1, if D(C1, C2) > Mint(C1, C2) ≤ 0

0, otherwise
(4)

Here, D(C1, C2) is the difference between components and
defined as the minimum weight edge:

D(C1, C2) = min
vi∈C1,vj∈C2,(vi,vj)∈E

w((vi, vj)) (5)

where the minimum internal difference Mint equals:

Mint(C1, C2) = min(Int(C1) + τ(C1),
Int(C2) + τ(C2))

(6)

with Int(C) = maxe∈MST (C,E) w(e) and MST being the
minimum spanning tree of the graph. The threshold function
τ(C) = k/|C| exists to compensate for small components
with k being a constant and |C|, the cardinality of C. Note
that, smaller components are allowed when there is a suffi-
ciently large difference between neighboring components.
The segmentation S = {C1 . . . Cs} can be efficiently found
by union-find algorithm. The adaptation to depth images is

done by designing the weights. We use the local smooth-
ness of the surface normals along with the proximity of the
neighboring points. Segmentation weights are defined as:

w(vi, vj) = ‖vni − vnj ‖∠(ni, nj) (7)

where (vni , v
n
j ) is the edge in the normalized coordinates.

While this approach generates a descent segmentation,
we do not need to process every segment. In fact, many
of these segments might lack sufficient geometry, or can
be very small / large, or be coplanar. For that, we apply
a filtering. We first remove segments which have a lot of
undefined depth values. Then, the segments not obeying
the size constraints are filtered out. Finally, we evaluate
the linearity of the segments. Because, we have the set
of normals {Ni

j} defined for each point nj of cluster i,
this procedure is simply applying a threshold τc over the
deviation from the mean normal, computed as:

σ(Ni) =
1

|Ni|

|Ni|∑
j=1

(∠(nijn̄i))
2 (8)

where {n̄i} is the set of mean cluster normals (see Section
2.2.3). The clusters which satisfy the condition σ(Ni) < τc
are early-rejected. In our experiments, we use a coarse-
to-fine (under to over) set of segmentations. Worst case
resorts to using the whole scene, while difficult cases, such
as small objects are found in coarser levels. Each segment
is processed disjointly. We then verify the detected poses as
in Section 2.2.4. This reduces the clutter and decreases the
number of scene points sought. Because less clutter implies
more relevant votes, it demystifies the Hough space and eases
the maximization. Then, the accuracy of the resulting pose,
as well as the detection rate increases. Besides, reduction in
computational cost comes as a by-product. We will discuss
this more in Section 3.3.

2.2.3 Pose Clustering and Averaging

As a result of Hough voting on disjoint clusters of segments,
we obtain, for each scene reference, a pose candidate. These
candidates are clustered for each segment separately. An
agglomerative clustering coupled with a good pose averaging
scheme is found to be reasonably accurate. Our clustering
is similar to [6]. Initially, the candidate poses are sorted
by the number of votes. The highest vote creates the first
cluster. We only create a new pose cluster, if the candidate
pose deviates significantly from the existing clusters. Each
time a pose is added to a cluster, the cluster mean is updated
and the cluster score is incremented.

The described clustering requires a pose averaging step,
which visits each pose candidate, once. For the sake of accu-
racy, it is prohibitive to use rotation matrices as they cannot



be directly averaged. On the other hand, techniques involv-
ing Lie algebra are generally found to be computationally
expensive [6]. Therefore, we employ a quaternion based fast
averaging technique as proposed in [17]. Given {qi}, a set
of quaternions, we form the weighted dot product matrix:

A =
1

nq

nq∑
i=1

wq
i (qTi · qi) (9)

where nq is the number of poses, and wqi is the number of
scene points found on the model, given the pose qi. The
mean quaternion qavg is given by the eigenvector emax
corresponding to the maximum eigenvalue of A, λmax.

In our trials, we found out that when the weights are
chosen appropriately, as explained, this averaging is twice
as better as the naive mean. For this reason, in all of the
experiments, we will be using this method to obtain the pose
clusters.

2.2.4 Hypotheses Verification

Our method generates a set of hypotheses per each object,
with reasonable pose accuracy. Yet, such a huge set of hy-
potheses demands an efficient verification scheme. Typical
strategies, such as Hinterstoister et al. [12], either put ICP
in the loop, whereas, for our method, the pose accuracy is
sufficient for ICP-less evaluations.

To verify and rank the collected hypothesis, we categorize
the visible space into 3: Clutter (outlier) Sc, occluders So
and points on the model Sm according to the following
projection error function:

Eh(p,m) = Dp − Φ(p|M,Θh,K) (10)

Φ selects the projection of the model points M correspond-
ing to pixel p, given a camera matrixK and the pose parame-
ters Θh for hypothesis h. The classification for a given valid
point p is then conducted as:

p ∈


Sm, if |Eh(p,m)| ≤ τm
So, if Eh(p,m) ≥ τo
Sc, otherwise

subsequently, the score for a given hypothesis is:

Sh =

(
1− |p ∈ So|

Nm

)
· |p ∈ Sm|
Nm − |So|

(11)

where Nm is the number of model points on valid region
of the projection Φ(p|M,Θh,K). The thresholds τm and
τo depend on the sensor and are relaxed, due to the missing
points not acquired by the sensor. Similarly, we include
the check for coinciding normals using Eq. 2. Luckily,
these scores can be computed very efficiently using vertex
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Figure 4. 3D models of some of the objects used in our experiments.

buffers and Z-buffering on the GPU. Instead of transforming
the model with the given pose, we use the Θ−1 to update
the current camera view. Thanks to the accuracy in pose
estimation, the ICP is not a strict requirement of this stage.
In fact, frequently, the verification is ICP-free. Retrieving
the top Nbest poses finalizes our object detection pipeline.

This metric favors less occluded and less cluttered
matches, having more model points with consistent normals.
Yet, in our experiments, we found that use of filtered clusters
increases the chances of hypothesizing a descent pose, which
is only at seldom missed by the verification.

3. Results

We evaluate our method quantitatively and qualitatively
on synthetic and real datasets. For all experiments, the points
are downsampled with a distance of 3% times the diame-
ter. Normal orientation is sampled for nangle = 45. Some
models used in our experiments are shown in 4.

3.1. Synthetic Experiments

We synthetically evaluate the accuracy of our pose estima-
tion. To do that, we virtually render multiple CAD models
in 3D scenes along with artificial clutter, also generated
by other CAD models. To match the reality, our models
are the reconstructions of real objects taken from ACCV3D
dataset [12]. We synthesize 162 camera poses over the full
sphere for each object. Specifically, our objects are PHONE,
APE, DUCK, IRON, DRILLER, CAR and BENCHWISE.
The chosen models cover a variety of geometrical structures.
This corresponds to 1134 point cloud scenes, all of which
had apriori additive Gaussian noise. Because at this point
we are concerned for the pose accuracy, no segmentation is
applied and we record the rotational and translational errors
for correct detections. At this stage, an object is marked
detected if the resulting pose is close to the ground truth
pose. We set the threshold to 10% of the object diameter
for detection and 10◦ for rotation. Fig. 5(a) and 5(b) depict
the results obtained from pose estimation. It is seen that,
for many of the objects, our rotational component is twice
as more accurate as Drost et al. [10]. Since the translation
is also computed from rotations and the matching model
component, there is also similar refinement in translational
accuracy.
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Figure 5. Comparison of the voting strategies (Ours-W is the
weighted variant). a) Rotational errors. b) Translational errors.

3.2. Real Scenes

We evaluated our approach in terms of pose accuracy and
detection rate on real datasets. For quantitative comparisons,
ACCV3D dataset from [12] is used. This dataset is now
standard in object detection and many early works evaluated
their methods on it. The package includes 15 non-symmetric
objects appearing in ∼ 1100 scenes per object. Each scene
of an object is cluttered with the other objects. In none of
the scenes, the objects are subject to heavy occlusion.

Given a depth image, our algorithm not only detects the
object, but also estimates the pose. Thus, we compare our
method against LineMod [12], and Drost et al. [10], which
are the state of the art in pose estimation using only depth
images. Yet, it is worth paying attention to the following:

LineMod [12] is designed for multi-modal features and
incorporates color information. Yet, we favor a fair compari-
son to our method by only using depth cues. Naturally, this
has a negative impact on LineMod’s performance, as it re-
lies significantly on the color information. We, nevertheless,
include LineMod as a baseline. Unlike the experiments in
[12], we do not tune the parameters for each object or scene
when using our method. While carefully tuning parameters
sacrifices computational time for detection accuracy, it is
cumbersome and unfair. LineMod without ICP has very low
detection rates, as it is integrated in its matching pipeline.
Thus, we use it in the detection stage. Yet, the reported
poses are solely obtained by template matching and not ICP.
In the experiments with LineMod original implementation
of the authors was used, but only with depth information
and without post-processing. Unlike LineMod [12], Drost
et al. [10] don’t necessarily require the refinement. For this
reason, neither our poses nor the poses for Drost. et al. [10]
are refined and re-scored. We find this strategy inevitable
to reason about our pose results and not the results of ICP.
For all these reasons, our results will differ from the original
ones, but will be consistent along the experimentation.

The detection rates are shown in Table 1, for a subset of
objects in ACCV3D. We select a subset due to either lack
of accurate CAD models or large performance drops for
LineMod [12] (which would be unfair to show). For our

Table 1. Detection results on ACCV3D for different objects.

LineMod Drost et al. Ours

ape 42.88% 65.54% 81.95%
cam 68.78% 84.92% 91.00%
cat 35.62% 87.30% 95.76%
driller 51.52% 81.06% 81.22%
iron 35.22% 87.06% 93.92%

Average 46.80% 81.18% 88.77%
Avg. Runtime 119ms 6.3s 2.9s

datasets, only 2-3 segmentation levels per scene were suf-
ficient. In harder cases, one might use more maps to cover
for larger variation. It is clearly seen that our method out-
performs both methods. Our detection rates never fall below
Drost. et al. [10], as the worst case converges to full match-
ing. Thanks to meaningful segments, using all the points as
a single cluster is highly unlikely. On the average, we get
7% more, although this dataset is not cut for our method.
It is noteworthy that our improvements in the detection are
more significant for small objects (which are hard to spot in
clutter and occlusion), while the pose accuracy is more sig-
nificant in large objects with varying surface characteristics.
Nevertheless, we realize increased accuracy in both pose and
detection rate regardless of the object size. Also note that,
LineMod [12] uses only a hemisphere, whereas we recover
the full pose (see Fig. 1).

Next, we evaluate the pose accuracy, on the same dataset.
To do that, we first define a new error function, which is free
of the point correspondences but rather depends directly on
the pose parameters:

erri = dθ(M
0
marker(M

i
marker)

−1Mi
obj ,M

0
obj) (12)

dθ is a function returning an error vector err with angular
and translational components. Mi

obj is the object pose at
frame i, where as Mi

marker is the pose of the marker board
for the same frame. The overall error per object is simply
reported as the average pose error in all test frames, i.e aver-
age of the set {erri} . This metric transfers each estimated
pose to the first frame and computes a pose error between de-
tected object pose transformed to the first frame and ground
truth pose in the first frame. We evaluate the error on CAT,
DUCK and CAM objects. After transferring each to the
initial frame, we perform an ICP and report in Fig. 7 {erri}
convergence from our detected pose. After the same number
of ICP iterations we have lower rotation/translation error
and also because of the better detected pose we need less
iterations to achieve better accuracy after ICP refinement.

Finally, Fig. 6 visualizes the results of our method both on
a self built setup (Fig. 6(a)) and on ACCV3D dataset using
CAT object (Fig. 6(b)). We show that both the detections
and the pose accuracy is visually better than the antecedents.
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Figure 6. Qualitative results. a) Detection results in our data, with presence of small objects in long-range Kinect scans. b) Pose estimation
results on ACCV3D dataset [12]. The accuracy in our poses is even visually distinguishable.
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Figure 7. Pose errors on ACCV3D dataset as ICP iterates. Rotations
are in degrees, while for translation, y-axes are normalized with
model diameter.

3.3. Runtime

Complexity Analysis One drawback of PPF matching is
the combinatorial pairing approach. One way to overcome
this problem is by pairing the scene points very sparsely,
which is suboptimal. Let M be the number of scene refer-
ence points Sr, and N denote all the paired points in the
scene. The pairing (Sr,Si) then creates a complexity of
O(MN) = O(N2

xN
2
y ), where (Nx, Ny) denotes the dimen-

sions (invisible points and hash-table search are excluded).
If we are to segment the image into K clusters, the aver-

age number of Sr per cluster as well as the number of paired
points are reduced to M

K and N
K , respectively, resulting in

an overall complexity of O(MN
K2 ) per cluster. The overall

average time complexity is reduced to O(MN
K ). If we agree

to keep the same complexity, we can now vote for more
points. Instead, we prefer to use a set of segmentation with
different segment sizes, resulting in more clusters.

Performance We first report the runtime of our algorithm
on ACCV3D dataset in Table 1. Note that even though we
get 2x speed-up over Drost et al. [10], this is less than the

# Segments

5 10 15 20 25 30 35

R
u

n
ti
m

e
 (

s
e

c
)

0

0.2

0.4

0.6

0.8

1

Figure 8. Effects of number of segments on runtime.

theoretical possibility. In fact, this is due to the trade-off of
obtaining superior detection rate and accuracy by using a
sequence of segmentation and more scene points w.r.t. the
original algorithm.

As explained, the performance is largely affected by the
size and the number of the segments. Next experiment tar-
gets this effect. We take 3 arbitrary models present in 1000
images, where the objects of interest were CAR, APE and
DUCK. We sample ∼ 900 model points. In each scene, we
seek for the minimal number of scene points to pair for a
correct match and use that to record the timings. This is
in order to make sure that every trial actually results in a
correct pose. We plot the segment size vs speed relation in
Fig. 8. These timings exclude the data acquisition. Note
that there is an optimum point (correct segmentation), which
generally depends on the scene. For this experiment, we
could reduce the matching time to 170 ms by just using 1

50th

of the scene points. However, typically, suboptimal choices
already allow a descent reduction of computational time, as
we do not rely on the precision of the segmentation. This
means that, being able to use more clusters, decreases the
demand on the sampling and one could use much less scene



points to obtain a successful match. Naturally, increasing
the segment sizes, reduces the number of clusters and thus
the performance converges to that of the original algorithm.

4. Conclusion & Future Work
We revised a complete pipeline for robust 3D object de-

tection based on point pair features and Hough-like voting
of Drost et al. [10], which enjoys segmentation proposals to-
gether with strengthened representation, voting mechanisms
and hypothesis verification. We compared our approach to
the state of the art methods and showed that our pipeline
produced better detection rate and pose accuracy than the
state of the art with reduced computational complexity. Our
technique is especially suited for detection of objects with
varying sizes in clutter and occlusion.

In the future work, we plan to investigate scalable joint
detection and pose estimation using segments and adaptive
sampling strategies.
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